

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ)

ПРИКАЗ

5 нахора 2024г.

Москва

№ 996-17

Об утверждении Норм летной годности беспилотных авиационных систем с беспилотным воздушным судном вертолетного типа, НЛГ БАС-ВТ. Издание 2

В соответствии с пунктом 2 статьи 35 Воздушного кодекса Российской Федерации, подпунктом 5.14.4 пункта 5 и подпунктом 9.9 пункта 9 Положения о Федеральном агентстве воздушного транспорта, утвержденного постановлением Правительства Российской Федерации от 30 июля 2004 г. \mathbb{N}_{2} \mathbb{N}_{3} \mathbb{N}_{2} \mathbb{N}_{3} \mathbb{N}_{3} \mathbb{N}_{3} \mathbb{N}_{4} \mathbb{N}_{3} \mathbb{N}_{4} \mathbb{N}_{5} \mathbb{N}_{5}

1. Утвердить прилагаемые Нормы летной годности беспилотных авиационных систем с беспилотным воздушным судном, НЛГ БАС-ВГ. Издание 2.

2. Установить, что настоящий приказ вступает в силу с 1 января 2025 г.

Руководитель

Д.В. Ядров

Куразеев Александр Павлович 8 495 645 85 55 доб. 67-27

УТВЕРЖДЕНЫ приказом Федерального агентства воздушного транспорта

от <u>5 но абрая 2024г. № 996-</u>17

НОРМЫ ЛЕТНОЙ ГОДНОСТИ БЕСПИЛОТНЫХ АВИАЦИОННЫХ СИСТЕМ С БЕСПИЛОТНЫМ ВОЗДУШНЫМ СУДНОМ ВЕРТОЛЕТНОГО ТИПА

НЛГ БАС-ВТ

Издание 2

ЛИСТ УЧЕТА ИЗМЕНЕНИЙ

к Нормам летной годности беспилотных авиационных систем с беспилотным воздушным судном вертолетного типа НЛГ БАС-ВТ

N₂	Обозначение
п/п	изменения
1	Раздел А
1	(a), (1), (2), (b), (c), (d), (e) изменены
	Раздел 0
	БАС-ВТ.0.1 введен
	БАС-ВТ.0.2 зарезервирован
	БАС-ВТ.0.3 введен
	БАС-ВТ.0.4 введен
	БАС-ВТ.16, БАС-ВТ.17, БАС-ВТ.18 изъяты
	Раздел В
	БАС-ВТ.21 изменен; (с) введен
	БАС-ВТ.22 введен
	БАС-ВТ.23 изъят
	БАС-ВТ.24 изменен
	БАС-ВТ.25 изменен; (с) введен
	БАС-ВТ.27 изменен
	БАС-ВТ.29 изменен БАС-ВТ.33(f) введен
	БАС-ВТ.45 изменен
	БАС-ВТ.49 введен
	БАС-ВТ.51 изменен
	БАС-ВТ.71 изменен
	БАС-ВТ.73 изъят
	БАС-ВТ.75 изменен
	БАС-ВТ.87 изменен
	БАС-ВТ.143 изменен
	БАС-ВТ.171 изменен
	БАС-ВТ.177 изменен
	БАС-ВТ.231 изменен
	БАС-ВТ.235 введен БАС-ВТ.239 изменен
	ВАС-В 1.239 изменен
	Раздел С БАС-ВТ.321(c) и (e) изъяты
	БАС-ВТ.337(с) введен
	БАС-ВТ.351 изменен; (b) введен
	БАС-ВТ.395 изменен
	БАС-ВТ.397 изъят
	БАС-ВТ.547 изменен; (b) введен
	БАС-ВТ.549 изменен
	Раздел D
	БАС-ВТ.603(а) изменен
	БАС-ВТ.615(с) изъят
	БАС-ВТ.621 изменен
	EAC PT 671(a) propagating EAC PT 1731(a)
	БАС-ВТ.671(а) перенесен в БАС-ВТ.1731(с) БАС-ВТ.683 изменен
	БАС-ВТ.691 изменен
	БАС-ВТ.695 введен
	2110 211070 введен

ВАС-ВТ.727(е) введен БАС-ВТ.787 изменен БАС-ВТ.853 изменен БАС-ВТ.855 изъят БАС-ВТ.865 введен БАС-ВТ.867 изъят Раздел Е БАС-ВТ.901(d) введен БАС-ВТ.903 изменен; (b) перенесен в БАС-
БАС-ВТ.787 изменен БАС-ВТ.853 изменен БАС-ВТ.855 изъят БАС-ВТ.865 введен БАС-ВТ.867 изъят Раздел Е БАС-ВТ.901(d) введен БАС-ВТ.903 изменен; (b) перенесен в БАС-
ВТ.908 БАС-ВТ.908 введен БАС-ВТ.931 изменен БАС-ВТ.951(с) изъят БАС-ВТ.971 (с) и (d) введены БАС-ВТ.975 (с) введен БАС-ВТ.981(а) изменен; (с), (d), (е) и (f) введены БАС-ВТ.983(с),(d) изменен; (і*) введен БАС-ВТ.985(е) введен БАС-ВТ.985(е) введен БАС-ВТ.997 введен БАС-ВТ.1011 изменен БАС-ВТ.1011 изменен БАС-ВТ.1045(d) введен БАС-ВТ.1308 изъят БАС-ВТ.1309 изменен БАС-ВТ.1317 введен БАС-ВТ.1329 изменен; (а)(3) введен БАС-ВТ.1353 изменен БАС-ВТ.1361(с) введен БАС-ВТ.1481 изменен БАС-ВТ.1481 изменен БАС-ВТ.1505 изменен БАС-ВТ.1505 изменен БАС-ВТ.1565 изменен БАС-ВТ.1583(j) введен БАС-ВТ.1585 изменен БАС-ВТ.1585 изменен БАС-ВТ.1585 изменен БАС-ВТ.1701(d) введен БАС-ВТ.1701(d) введен БАС-ВТ.1835 изменен; (d), (е) и (f) изъяты

№ п/п	Обозначение изменения	№ п/п	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	12
РАЗДЕЛ А – ОБЩИЕ ПОЛОЖЕНИЯ	13
БАС-ВТ.1 Применимость	
РАЗДЕЛ 0 – ОБЩИЕ ТРЕБОВАНИЯ К ЛЕТНОЙ ГОДНОСТИ БАС-ВТ ПРИ ОТКАЗАХ	
ФУНКЦИОНАЛЬНЫХ СИСТЕМ	14
БАС-ВТ.0.1. Общие положения	
БАС-ВТ.0.2 [Зарезервирован]	
БАС-ВТ.0.3. Вероятности возникновения особых ситуаций	
БАС-ВТ.0.4. Приемлемые методы	
РАЗДЕЛ В – ПОЛЕТ	
ОБЩИЕ ТРЕБОВАНИЯ	
БАС-ВТ.21. Доказательство соответствия	
БАС-ВТ.22. Одобренные эксплуатационные режимы полета	
БАС-BT.24. Условия транспортировки, реконфигурации и хранения	
БАС-ВТ.25. Ограничения по массе	
БАС-ВТ.27. Ограничения по положению центра тяжести	
БАС-BT.29. Масса пустого БВС-ВТ и соответствующее положение центра тяжести	
БАС-ВТ.31. Съемный балласт	
БАС-ВТ.33. Ограничения по частоте вращения и шагу несущего винта	
ЛЕТНЫЕ ДАННЫЕ	
БАС-ВТ.45. Общие положения	
БАС-ВТ.49. Летные данные при минимальной эксплуатационной скорости	
БАС-ВТ.51. Взлёт	
БАС-ВТ.65. Набор высоты	
БАС-BT.71. Режим авторотации БВС-ВТ	
БАС-ВТ.75. Посадка	
БАС-ВТ.87. Зона опасных сочетаний высоты и скорости «H-V»	20
ПОЛЕТНЫЕ ХАРАКТЕРИСТИКИ	
БАС-ВТ.141. Общие положения	21
БАС-ВТ.143. Управляемость и маневренность	
БАС-ВТ.171. Устойчивость. Общие положения	22
БАС-ВТ.177. Путевая устойчивость	22
ХАРАКТЕРИСТИКИ УПРАВЛЯЕМОСТИ НА ЗЕМЛЕ И НА ВОДЕ	23
БАС-ВТ.231. Общие положения	23
БАС-ВТ.235. Руление	
БАС-ВТ.239. Характеристики брызгообразования	
БАС-ВТ.241. Земной резонанс	
РАЗНЫЕ ЛЕТНЫЕ ТРЕБОВАНИЯ	
БАС-ВТ.251. Вибрация	
РАЗДЕЛ С – ПРОЧНОСТЬ	
ОБЩИЕ ТРЕБОВАНИЯ	
БАС-ВТ.301. Нагрузки	
БАС-ВТ.302. Взаимодействие систем и конструкций	
БАС-ВТ.303. Коэффициент безопасности	
БАС-ВТ.305. Прочность и деформации	
БАС-ВТ.307. Доказательство прочности конструкции	
БАС-ВТ.309. Конструктивные ограничения	
НАГРУЗКИ В ПОЛЕТЕ	
БАС-ВТ.321. Общие положения	
БАС-ВТ.337. Эксплуатационная перегрузка при маневре	
БАС-ВТ.339. Результирующие эксплуатационные нагрузки при маневре	25

БАС-ВТ.341. Нагрузки от воздушных порывов	26
БАС-ВТ.351. Условия скольжения	26
БАС-ВТ.361. Крутящий момент двигателя	26
НАГРУЗКИ НА ПОВЕРХНОСТИ И МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫ СИСТЕМЫ УПРАВЛЕ	КИН
	26
БАС-ВТ.391. Общие положения	26
БАС-ВТ.395. Нагрузки в системе управления	26
БАС-ВТ.411. Клиренс рулевого винта: предохранительное устройство	27
БАС-ВТ.427. Несимметричные нагрузки	27
НАГРУЗКИ НА ЗЕМЛЕ	28
БАС-ВТ.471. Общие положения	28
БАС-ВТ.473. Условия нагружения на земле и допущения	28
БАС-ВТ.475. Амортизаторы	28
БАС-ВТ.501. Условия нагружения на земле: полозковое шасси	28
БАС-ВТ.505. Условия посадки на лыжи	29
НАГРУЗКИ НА ВОДЕ	29
БАС-ВТ.521. Условия посадки на поплавки	
ТРЕБОВАНИЯ К ОСНОВНЫМ ЭЛЕМЕНТАМ КОНСТРУКЦИИ	30
БАС-ВТ.547. Конструкция несущего и рулевого винтов	30
БАС-ВТ.549. Конструкция фюзеляжа и пилона винта	30
УСЛОВИЯ АВАРИЙНОЙ ПОСАДКИ	30
БАС-ВТ.561. Общие положения	30
ОЦЕНКА УСТАЛОСТНОЙ ПРОЧНОСТИ	31
БАС-ВТ.570. Общие положения	31
БАС-ВТ.571. Оценка усталостной прочности	31
РАЗДЕЛ D – ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ	32
ОБЩИЕ ТРЕБОВАНИЯ	32
БАС-ВТ.601. Конструкция	32
БАС-ВТ.602. Критические части	32
БАС-BT.603. Материалы	32
БАС-ВТ.605. Технологические процессы	32
БАС-ВТ.607. Детали крепления	32
БАС-ВТ.609. Защита конструкции	32
БАС-ВТ.610. Защита от молнии и статического электричества	32
БАС-ВТ.611. Обеспечение обслуживания	
БАС-ВТ.613. Характеристики прочности материала и их расчетные значения	33
БАС-ВТ.615. Свойства конструкции	
БАС-ВТ.619. Дополнительные коэффициенты безопасности	
БАС-ВТ.621. Дополнительные коэффициенты безопасности для отливок и деталей,	
изготовленных методами аддитивных технологий	34
БАС-ВТ.623. Дополнительные коэффициенты безопасности на смятие	34
БАС-ВТ.625. Дополнительные коэффициенты безопасности для соединений	34
БАС-ВТ.629. Флаттер и дивергенция	34
ВИНТЫ	34
БАС-ВТ.653. Выравнивание давления и дренирование лопастей винта	34
БАС-ВТ.659. Балансировка по массе	34
БАС-ВТ.661. Зазор между лопастями винта и частями конструкции	34
БАС-ВТ.663. Средства предотвращения земного резонанса	
СИСТЕМЫ УПРАВЛЕНИЯ	
БАС-ВТ.671. Общие положения	35
БАС-ВТ.673. Основные органы управления полетом	35
БАС-ВТ.674. Взаимосвязанные системы управления	
БАС-ВТ.675. Упоры	

БАС-ВТ.679. Стопорные устройства системы управления	35
БАС-ВТ.681. Статические испытания при расчетных нагрузках	35
БАС-ВТ.683. Испытания на функционирование	
БАС-ВТ.685. Детали системы управления	35
БАС-ВТ.691. Механизм перевода на авторотацию	36
БАС-ВТ.695. Системы управления с силовыми приводами	36
ШАССИ	36
БАС-ВТ.723. Испытания на сброс для определения работоемкости шасси	36
БАС-ВТ.725. Испытания на сброс при эксплуатационной нагрузке	
БАС-ВТ.727. Испытания на сброс для определения располагаемой работоемкости шасси	37
РАЗМЕЩЕНИЕ ЦЕЛЕВОЙ НАГРУЗКИ	37
БАС-ВТ.787. Отсеки целевой нагрузки	
ПОЖАРНАЯ ЗАЩИТА	
БАС-ВТ.853. Внутренняя отделка отсеков целевой нагрузки и бортового оборудования	37
БАС-ВТ.859. Системы обогрева	
БАС-ВТ.861. Пожарная защита органов управления полётом и конструкции	37
БАС-ВТ.863. Пожарная защита зон с воспламеняющимися жидкостями	
ВНЕШНИЙ ГРУЗ	38
БАС-ВТ.865. Средства крепления внешнего груза	
PA3HOE	
БАС-ВТ.871. Реперные точки	
БАС-ВТ.873. Средства крепления балласта	
Раздел Е – СИЛОВАЯ УСТАНОВКА	
ОБЩИЕ ПОЛОЖЕНИЯ	40
БАС-ВТ.901. Силовая установка	
БАС-ВТ.903. Двигатели	
БАС-ВТ.907. Вибрации двигателя	
БАС-ВТ.908. Вентиляторы охлаждения	
СИСТЕМА ПРИВОДА ВИНТА	
БАС-ВТ.917. Конструкция	
БАС-ВТ.921. Тормоз винта	
БАС-ВТ.923. Испытание системы привода винта и механизмов управления	
БАС-ВТ.927. Дополнительные испытания	
БАС-ВТ.931. Критическая частота вращения валов трансмиссии	
БАС-ВТ.935. Соединения валов трансмиссии	
ТОПЛИВНАЯ СИСТЕМА	
БАС-ВТ.951. Общие положения	
БАС-ВТ.954. Молниезащита топливной системы	
БАС-ВТ.955. Подача топлива	
БАС-ВТ.959. Невырабатываемый остаток топлива в баках	
БАС-ВТ.961. Эксплуатация топливной системы при высокой температуре	
БАС-ВТ.963. Топливные баки. Общие положения	
БАС-ВТ.965. Испытания топливных баков	
БАС-ВТ.967. Установка топливного бака	
БАС-ВТ.969. Расширительное пространство топливного бака	
БАС-ВТ.971. Отстойник топливного бака	45
БАС-ВТ.971. Отстоиник топливного бака	
БАС-ВТ.975. Дренаж топливных баков и карбюраторов	
БАС-ВТ.973. Дренаж топливных оаков и кароюраторов	
ПОДСИСТЕМА ЭЛЕКТРОПИТАНИЯ ДЛЯ СОЗДАНИЯ МОЩНОСТИ, НЕОБХОДИМОЙ ДЈ	
ДВИЖЕНИЯ	
БАС-ВТ.981. Аккумулирование энергии, эксплуатационные характеристики и индикация	
БАС-ВТ. 983. Аккумулирование энергии, эксплуатационные характеристики и индикация БАС-ВТ.983. Аккумулирование энергии. Безопасность	
DITO DITOOTI KKYRIYAIIPODAIINO MOPININ DOMINOMONOOTB	70

БАС-ВТ.985. Аккумулирование энергии. Установка	47
ЭЛЕМЕНТЫ ТОПЛИВНОЙ СИСТЕМЫ	47
БАС-ВТ.991. Топливные насосы	
БАС-ВТ.993. Трубопроводы и арматура топливной системы	
БАС-ВТ.995. Топливные краны	
БАС-ВТ.997. Топливный сетчатый или другой фильтр	48
БАС-ВТ.999. Сливные устройства топливной системы	
МАСЛЯНАЯ СИСТЕМА	
БАС-ВТ.1011. Двигатели. Общие положения	
БАС-ВТ.1011. Двигатели. Оощие положения	
БАС-ВТ.1015. Испытания масляных баков	
БАС-ВТ.1013. Грубопроводы и арматура масляной системы	
БАС-ВТ.1019. Масляные фильтры	
БАС-ВТ.1021. Сливные устройства масляной системы	
БАС-ВТ.1023. Масляные теплообменники	
БАС-ВТ.1027. Трансмиссия и редукторы. Общие положения	
СИСТЕМА ОХЛАЖДЕНИЯ	
БАС-ВТ.1041. Общие положения	
БАС-ВТ.1043. Испытания системы охлаждения	
БАС-ВТ.1045. Методика испытаний системы охлаждения	
ЖИДКОСТНОЕ ОХЛАЖДЕНИЕ	
БАС-ВТ.1061. Установка	
БАС-ВТ.1063. Испытания баков для охлаждающей жидкости	52
СИСТЕМА ПОДВОДА ВОЗДУХА	53
БАС-ВТ.1091. Подвод воздуха	53
БАС-ВТ.1093. Защита системы подвода воздуха от обледенения	53
ВЫХЛОПНАЯ СИСТЕМА	54
БАС-ВТ.1121. Общие положения	54
БАС-ВТ.1123. Выхлопные трубы	54
ОРГАНЫ УПРАВЛЕНИЯ И АГРЕГАТЫ СИЛОВОЙ УСТАНОВКИ	54
БАС-ВТ.1163. Органы управления силовой установки. Общие положения	
БАС-ВТ.1165. Система зажигания двигателя	
ПОЖАРНАЯ ЗАЩИТА СИЛОВОЙ УСТАНОВКИ	
БАС-ВТ.1181. Установленные пожароопасные зоны, включая полости	
БАС-ВТ.1182. Зоны двигательного отсека за противопожарными перегородками	
БАС-ВТ.1183. Трубопроводы, соединения и компоненты	
БАС-ВТ.1185. Воспламеняющиеся жидкости	
БАС-ВТ.1187. Вентиляция	
БАС-ВТ.1189. Перекрывные средства	
БАС-ВТ.1191. Пожарные перегородки	
БАС-ВТ.1193. Капот и обшивка мотогондолы	
БАС-ВТ.1194. Другие поверхности	
РАЗДЕЛ F – ОБОРУДОВАНИЕ	
ОБЩИЕ ПОЛОЖЕНИЯ	
БАС-ВТ.1301. Назначение и установка	
БАС-BT.1303. Пилотажные и навигационные приборы	
БАС-ВТ.1305. Приборы силовой установки	
БАС-ВТ.1309. Оборудование, системы и установки	
БАС-ВТ.1310. Мощность источника энергии и система распределения	
БАС-BT.1316. Молниезащита электрической и электронной систем	
БАС-ВТ.1317. Защита от воздействия электромагнитных полей высокой интенсивности	
ПРИБОРЫ: УСТАНОВКА	
БАС-ВТ.1323. Система измерения воздушной скорости	59

БАС-ВТ.1325. Системы статического давления	60
БАС-ВТ.1327. Магнитный компас	60
БАС-ВТ.1329. Система управления полетом	60
БАС-ВТ.1331. Приборы, использующие электропитание	
БАС-ВТ.1337. Приборы контроля силовой установки	
ЭЛЕКТРИЧЕСКИЕ СИСТЕМЫ И ОБОРУДОВАНИЕ	
БАС-ВТ.1351. Общие положения	
БАС-ВТ.1353. Конструкция и установка аккумуляторной батареи, кроме батарей, питающ	
электрическую силовую установку	
БАС-ВТ.1361. Устройство быстрого отключения источников энергии	
БАС-ВТ.1365. Электрические провода	
БАС-ВТ.1367. Выключатели	
ОСВЕЩЕНИЕ	
БАС-ВТ.1383. Посадочные фары	
БАС-ВТ.1385. Установка бортовых аэронавигационных огней	64
БАС-ВТ.1387 Двугранные углы распространения светового потока аэронавигационных ог	гней
БАС-ВТ.1389. Распределение светового потока и сила света аэронавигационных огней	
БАС-ВТ.1391. Минимальные величины силы света в горизонтальной плоскости передних	
хвостового аэронавигационных огней	66
БАС-ВТ.1393. Минимальные величины силы света в любой вертикальной плоскости	
передних и хвостового аэронавигационных огней	66
БАС-ВТ.1395. Максимально допустимые величины силы света и перекрывающихся	
световых потоках передних и хвостового аэронавигационных огней	67
БАС-ВТ.1397. Требования, предъявляемые к цвету огней	67
БАС-ВТ.1401. Система огней для предотвращения столкновения	
ОБОРУДОВАНИЕ, ОБЕСПЕЧИВАЮЩЕЕ БЕЗОПАСНОСТЬ	
БАС-ВТ.1412. Система аварийной посадки	
БАС-ВТ.1413. Остановка двигателя	
БАС-ВТ.1419. Защита от обледенения	
ОБОРУДОВАНИЕ РАЗЛИЧНОГО НАЗНАЧЕНИЯ	69
БАС-ВТ.1431. Электронное оборудование	
БАС-ВТ.1459. Бортовая система регистрации полетных данных	
БАС-ВТ.1461. Оборудование, содержащее роторы с большой кинетической энергией	
БАС-ВТ.1481. Целевая нагрузка.	
БАС-ВТ.1492. Аварийное прекращение полета в ручном режиме	
РАЗДЕЛ G – ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ И ИНФОРМАЦИЯ	
ОБЩИЕ ПОЛОЖЕНИЯ	
БАС-ВТ.1501. Общие положения	72
ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ	
БАС-ВТ.1503. Ограничения по скорости полета. Общие положения	
БАС-ВТ.1505. Непревышаемая скорость полета	
БАС-ВТ.1509. Частота вращения несущего винта	
БАС-ВТ.1519. Масса и положение центра тяжести	
БАС-ВТ.1521. Ограничения, связанные с работой силовой установки	
БАС-ВТ.1525. Виды эксплуатации	
БАС-ВТ.1527. Максимальная эксплуатационная высота	
БАС-ВТ.1529. Инструкция по поддержанию летной годности	73
МАРКИРОВКА И ТАБЛИЧКИ	
БАС-ВТ.1541. Общие положения	
БАС-ВТ.1557. Прочие маркировки и трафареты	
БАС-ВТ.1565. Заметность вращающихся винтов	74
РУКОВОЛСТВО ПО ЛЕТНОЙ ЭКСПЛУАТАЦИИ БАС С БВС-ВТ	74

БАС-ВТ.1581. Общие положения	74
БАС-ВТ.1583. Эксплуатационные ограничения	75
БАС-ВТ.1585. Правила эксплуатации	
БАС-ВТ.1587. Сведения о летных данных	
БАС-ВТ.1589. Информация о загрузке	76
БАС-ВТ.1591. Информация канала связи	
РАЗДЕЛ Н – КАНАЛ КОНТРОЛЯ И УПРАВЛЕНИЯ	
БАС-ВТ.1601. Общие положения	
БАС-ВТ.1603. Архитектура канала для передачи команд управления	78
БАС-ВТ.1605. Электромагнитные помехи и электромагнитная совместимость	
БАС-ВТ.1607. Рабочие характеристики и мониторинг канала контроля и управления	
БАС-ВТ.1611. Скрытое запаздывание в канале контроля и управления	
БАС-ВТ.1613. Действия в случае отказа канала контроля и управления	
БАС-ВТ.1615. Экранирование антенны канала контроля и управления	
БАС-ВТ.1617. Переключение линий передачи данных контроля и управления	
БАС-ВТ.1618. Передача речевой информации	
РАЗДЕЛ І – НАЗЕМНАЯ СТАНЦИЯ УПРАВЛЕНИЯ	
ОБЩИЕ ПОЛОЖЕНИЯ	
БАС-ВТ.1701. Общие положения	
БАС-ВТ.1702. Инфраструктура СВП	
БАС-ВТ.1703. Рабочее место внешнего экипажа БАС	
БАС-ВТ.1704. Минимальное количество членов внешнего экипажа БАС	
БАС-ВТ.1705. Освещение рабочего места внешнего экипажа БАС	
БАС-ВТ.1707. Система связи	
БАС-ВТ.1709. Регистратор голоса (речевое записывающее устройство)	
БАС-ВТ.1711. Регистраторы данных СВП	81
БАС-ВТ.1717. Электрическое оборудование СВП	
БАС-ВТ.1719. Электропитание СВП БАС	
БАС-ВТ.1720. Автоматическое планирование полета	
ОТОБРАЖЕНИЕ ДАННЫХ НА СВП БАС	
БАС-ВТ.1721. Расположение и видимость приборов	
БАС-ВТ.1722. Частичное отображение информации	
БАС-ВТ.1723. Полетные и навигационные данные	
БАС-ВТ.1724. Данные системы обнаружения и предупреждения столкновений в воздухе	
БАС-ВТ.1725. Данные силовой установки	
БАС-ВТ.1726. Отображение данных оборудования, требуемых при эксплуатации	
БАС-ВТ.1727. Электронное отображение данных	
БАС-ВТ.1728. Отображение данных канала связи, предупреждения и индикаторы	
БАС-ВТ.1729. Данные о количестве топлива и масла	84
БАС-ВТ.1730. Данные системы автоматического взлета или системы автоматической	
посадки 84	
ОРГАНЫ УПРАВЛЕНИЯ	84
БАС-ВТ.1731. Общие положения	
БАС-ВТ.1732. Органы управления в критических ситуациях	
БАС-ВТ.1733. Общепринятые органы управления и индикаторы	
БАС-ВТ.1735. Перемещение и форма органов управления	
БАС-ВТ.1741. Органы управления полетом в СВП БАС	85
БАС-ВТ.1742. Органы управления системой прекращения полета	
БАС-ВТ.1743. Органы управления подачей топлива	
БАС-ВТ.1745. Управление аварийным сливом топлива	
БАС-ВТ.1747. Управление устройствами забора воздуха	
БАС-ВТ.1751. Средства управления двигателем	
БАС-ВТ.1753. Выключатели зажигания	

10

БАС-ВТ.1755. Органы управления топливной смесью	86
БАС-ВТ.1765. Органы управления отключением	
БАС-ВТ.1769. Орган управления «аварийное прекращение работы» для систем с	
автоматическим взлетом или автоматической посадкой	86
УПРАВЛЕНИЕ НЕСКОЛЬКИМИ БВС-ВТ/ УПРАВЛЕНИЕ С НЕСКОЛЬКИХ СВП	86
БАС-ВТ.1775. Передача управления между станциями внешних пилотов	
БЕЗОПАСНОСТЬ СТАНЦИИ ВНЕШНЕГО ПИЛОТА	87
БАС-ВТ.1777. Контроль доступа к станции внешнего пилота	
ИНДИКАТОРЫ И ПРЕДУПРЕЖДЕНИЯ	
БАС-ВТ.1785. Цветовой код (обозначение) предупреждений, предостережений и	
рекомендательной информации	87
БАС-ВТ.1787. Автоматическая диагностика и мониторинг систем БВС-ВТ	
БАС-ВТ.1788. Предупреждение об ухудшении режимов работы	
БАС-ВТ.1790. Режим индикатора контроля БВС-ВТ	
БАС-ВТ.1793. Индикатор положения шасси и предупреждение	
БАС-ВТ.1797. Индикаторы топливных насосов	88
БАС-ВТ.1799. Индикатор забора воздуха	
БАС-ВТ.1801. Предупреждение о разрядке аккумуляторов	
БАС-ВТ.1805. Индикатор отсечных клапанов	
БАС-ВТ.1809. Оповещения и индикаторы электрических систем БВС-ВТ	
БАС-ВТ.1817. Предупреждение противопожарной защиты	
БАС-ВТ.1819. Система индикации обогрева ПВД (если применимо)	
БАС-ВТ.1821. Индикатор распределения мощности	
БАС-ВТ.1825. Предупреждение о блокировании системы управлением полета	
БАС-ВТ.1827. Предупреждение о олокировании системы управлением полета	
ИНФОРМАЦИЯ, МАРКИРОВКА И ТАБЛИЧКИ	00
БАС-ВТ.1835. Данные о воздушной скорости	
БАС-BT.1837. Магнитный курс или данные отслеживания	
БАС-ВТ.1839. Данные, относящиеся к силовой установке	
БАС-ВТ.1841. Данные о количестве масла	
БАС-ВТ.1843. Данные о количестве топлива	
БАС-ВТ.1845. Маркировки органов управления	
БАС-ВТ.1849. Индикация эксплуатационных ограничений	90
РАЗДЕЛ J – СИСТЕМА ОБНАРУЖЕНИЯ И ПРЕДОТВРАЩЕНИЯ СТОЛКНОВЕНИЙ В	0.1
BO3ДУXE	
БАС-ВТ.1851. Общие положения	91
ПРИЛОЖЕНИЕ А ИНСТРУКЦИЯ ПО ПОДДЕРЖАНИЮ ЛЕТНОЙ ГОДНОСТИ	
БАС-ВТ.А.1. Общие положения	
БАС-ВТ.А.2. Вид и тип оформления	
БАС-ВТ.А.3. Содержание	
БАС-ВТ.А.4. Раздел «Ограничения летной годности»	
ПРИЛОЖЕНИЕ В [Зарезервировано]	94
ПРИЛОЖЕНИЕ С [Зарезервировано]	95
приложение д уровни воздействия электромагнитных полей высокой	
ИНТЕНСИВНОСТИ (HIRF) И ИСПЫТАТЕЛЬНЫЕ УРОВНИ HIRF ДЛЯ ОБОРУДОВАНИЯ	
ПРИЛОЖЕНИЕ Е [Зарезервировано]	98
ПРИЛОЖЕНИЕ F ПРИЕМЛЕМАЯ ПРОЦЕДУРА ИСПЫТАНИЙ САМОЗАТУХАЮЩИХ	
МАТЕРИАЛОВ	
БАС-BT.F.1. Условия испытаний	
БАС-BT.F.2. Форма образцов	
БАС-ВТ.Г.3. Аппаратура	
БАС-ВТ F 4 Испытания в вертикальном положении	99

БАС-ВТ.F.5. Длина обугливания	99
ИСПОЛЬЗОВАННЫЕ ТЕРМИНЫ, ИХ ЗНАЧЕНИЯ	
ПРИНЯТЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ	104

12 Нормы лётной годности НЛГ БАС-ВТ

ВВЕДЕНИЕ

Нормы разработаны на основании рекомендаций ИКАО и обобщения анонсированных результатов работ международных рабочих групп авиационных властей и специалистов по разработке требований к типовой конструкции БАС.

Настоящее Издание 2 содержит только требования для категории БАС, подлежащей сертификации типа в соответствии с законодательными актами Российской Федерации.

Для БАС, не относящихся к указанной категории, должны быть разработаны отдельные требования в соответствии с применимой процедурой.

Структурно Нормы летной годности состоят из разделов A, B, C, D, E, F, G, H, I, J и Приложений A, B, C, D, E, F, G.

Разделы НЛГ по содержанию и нумерации пунктов гармонизированы с соответствующими подразделами Норм летной годности АП-27 (2013 г.) с учетом рекомендаций CS-LURS (Ver.1.0, 2013) для беспилотной авиационной системы с БВС вертолетного типа. Нормы летной годности содержат зарезервированные пункты требований, которые должны быть разработаны и введены в последующие редакции настоящих Норм с сохранением общего порядка построения документа.

При нумерации пунктов приняты обозначения БАС-ВТ.Х, где:

БАС-ВТ – означает принадлежность к системе с БВС вертолетного типа;

Х – порядковый номер пункта Норм.

Перечень изменений, вносимых в Нормы лётной годности беспилотных авиационных систем с беспилотным воздушным судном вертолетного типа НЛГ БАС-ВТ после их утверждения приказом Федерального агентства воздушного транспорта (далее — Уполномоченный орган), осуществляющим функции по оказанию государственных услуг и управлению государственным имуществом в сфере воздушного транспорта, приводится в Листах учета изменений, при этом для каждого изменения указывается его характер: изменен, введен, изъят.

В настоящем издании параграфы обозначаются заглавными буквами русского алфавита и арабскими цифрами (например, БАС-ВТ.21), пункты в параграфах – строчными буквами латинского алфавита (a, b, c ...), подпункты – арабскими цифрами и символами (1, 2, 3, ...; i, ii, iii...). Если в тексте пункта указана ссылка на подпункт (например, минимально возможный шаг соответствовал требованиям (b)(1)), то подразумевается соответствующий подпункт текущего пункта.

13 Нормы лётной годности НЛГ БАС-ВТ

РАЗДЕЛ А – ОБЩИЕ ПОЛОЖЕНИЯ

БАС-ВТ.1 Применимость

- (а) Настоящие Нормы содержат требования к летной годности беспилотной авиационной системы с беспилотным воздушным судном вертолетного типа с максимальной взлетной массой, превышающей 30 кг, предназначенным для перевозки пассажиров, перевозки опасных грузов и выполнения полётов над скоплениями людей.
- (1) Применительно к настоящим нормам под скоплениями людей могут пониматься, например, спортивные, культурные, религиозные, политические мероприятия, места культурного отдыха в периоды их массового посещения отдыхающими, деловые и промышленные районы в рабочие часы, горнолыжные комплексы.
- (2) Применительно к настоящим нормам под опасными грузами понимаются грузы, действие подпадающие Федеральных под авиационных правил «Правила перевозки опасных воздушными судами гражданской авиации», утвержденных Приказом Минтранса России от 05 сентября 2008 года № 141 (зарегистрировано в Министерстве юстиций Российской Федерации от 29 сентября 2008 года № 12356).
- (b) Беспилотная авиационная система состоит из следующих основных элементов ее типовой конструкции: беспилотное воздушное судно (БВС) вертолетного типа, станция внешнего пилота

- (СВП), цифровая линия передачи данных (ЛПД), включающая каналы управления, передачи данных контроля и систему связи.
- (c) Типовая конструкция БАС, соответствующая требованиям настоящих Норм летной годности, предполагает, что в каждый момент времени каждое БВС в составе БАС получает команды управления только с одной СВП.
- (d) До получения научно обоснованных исследований результатов обеспечения установленного уровня безопасности полетов настоящие Нормы летной годности предусматривают полёт БВС в автономном режиме, за исключением выполнения режима возврата БВС в случае потери связи с СВП, если применение такого режима согласовано Уполномоченным органом, а также присутствие людей (включая членов экипажа) на борту БВС. Ряд требований, в которых указана применимость для БАС, предназначенных для перевозки людей, могут быть использованы Заявителями для предварительной оценки выполнимости в рамках будущих работ.
- (е) В качестве доказательства соответствия отдельных пунктов настоящих НЛГ Заявитель, по согласованию с Уполномоченным органом, может представлять результаты ранее выполненных испытательных или иных работ, при условии, что применявшиеся методики таких работ обеспечивают доказательство соответствующим требованиями.

РАЗДЕЛ 0 – ОБЩИЕ ТРЕБОВАНИЯ К ЛЕТНОЙ ГОДНОСТИ БАС-ВТ ПРИ ОТКАЗАХ ФУНКПИОНАЛЬНЫХ СИСТЕМ

14

БАС-ВТ.0.1. Общие положения

- (а) Настоящий раздел содержит детализированные требования, пояснительный материал, а также определения и терминологию, относящиеся к общим требованиям к летной годности БАС-ВТ, при отказах функциональных систем. Этот раздел дополняет и конкретизирует требования пункта БАС-ВТ.1309(b) и относится ко всем функциональным системам и оборудованию БАС-ВТ, за исключением:
- (1) Систем силовой установки, изготовленных как часть сертифицированного двигателя, отказы которых не могут оказать отрицательного влияния на другие системы;
- (2) Элементов конструкции (таких, как несущий и рулевой винты, крыло, оперение, поверхности управления, фюзеляж, узлы крепления двигателя, силовые элементы шасси и узлы его крепления), которые специально рассмотрены в разделах С и D НЛГ БАС-ВТ.
- (b) Требования настоящего раздела не отменяют и не заменяют собой конкретные требования к отказобезопасности отдельных функциональных систем и оборудования, изложенные в других разделах НЛГ БАС-ВТ.

БАС-ВТ.0.2 [Зарезервирован]

БАС-ВТ.0.3. Вероятности возникновения особых ситуаций

- (а) [Зарезервирован]
- (b) Применительно БАС-ВТ к C БВС-ВТ однодвигательным или многодвигательным БВС-ВТ, не обеспечивающим возможность продолжения полёта и безопасной посадки в случае отказа одного двигателя, оборудование системы должны И спроектированы и установлены таким образом, чтобы свести к минимуму опасность для БАС-ВТ в случае их неправильного функционирования или отказа.
- (c) БАС-ВТ с БВС ВТ, имеющим более одного двигателя и способным к продолжению полёта и выполнению безопасной посадки в случае отказа одного двигателя, должен быть спроектирован и

построен таким образом, чтобы в ожидаемых условиях эксплуатации при действиях внешнего экипажа в соответствии с РЛЭ:

- (1) Каждое отказное состояние (функциональный отказ, вид отказа системы), приводящее к возникновению катастрофической (катастрофического ситуации эффекта), оценивалось как практически невероятное и не возникало вследствие единичного отказа. При этом для БАС-ВТ, предназначенных для перевозки людей и животных и выполняющих полёты в автоматическом режиме, рекомендуется, чтобы суммарная вероятность возникновения катастрофической ситуации (катастрофического эффекта), вызванной отказными состояниями (функциональными отказами, видами отказов систем), для БАС-ВТ в целом не превышала 10-7 на час полета.
- (2) Каждое отказное состояние (функциональный отказ, вид отказа системы), приводящее к аварийной ситуации (аварийному эффекту), должно оцениваться как событие не более частое, чем крайне маловероятное. При этом для БАС-ВТ, предназначенных для перевозки людей или животных и выполняющих полёты в автоматическом режиме, рекомендуется, чтобы суммарная вероятность возникновения аварийной ситуации (аварийного эффекта), вызванной (функциональными отказными состояниями отказами, видами отказов систем), для БАС-ВТ в целом не превышала 10-6 на час полета.
- (3) Каждое отказное состояние (функциональный отказ, вид отказа системы), приводящее к сложной ситуации, оцениваться как событие не более частое, чем маловероятное. При этом для БАС-ВТ, предназначенных для перевозки людей или животных выполняющих полёты автоматическом режиме, рекомендуется, чтобы суммарная вероятность возникновения сложной ситуации (существенного эффекта), вызванной (функциональными отказными состояниями отказами, видами отказов систем), для БАС-ВТ в целом не превышала 10-5 на час полета.
- (4) Для БАС-ВТ не предназначенных для перевозки людей и животных, и имеющих возможность вмешательства внешнего экипажа в управление движением на каждом этапе полёта, могут применяться вероятности возникновения

летными

пилотажном

стендовых

БАС-ВТ.

к которым

вилами

или

испытаниями

другими

расчетом

указанных в подпунктах (1), (2) и (3) равные 10^{-6} , 10^{-5} и 10^{-4} соответственно.

(d) Все усложнения условий полета и отказные состояния (функциональные отказы, виды отказов систем), приводящие к их возникновению, подлежат анализу с целью отработки соответствующих рекомендаций по действиям внешнего экипажа в процессе полёта БВС.

Примечание: желательно, чтобы для БАС-ВТ, предназначенных для перевозки людей или животных отказное любое состояние, приводящее к усложнению условий полета (незначительному эффекту), не могло быть отнесено к частым событиям.

- (е) При анализе особой ситуации (эффекта), вызванной отказным состоянием (функциональным отказом. видом отказа системы), необходимо учитывать факторы, которые могут усугубить последствия (степень опасности) начального отказного (вида отказа системы), включая связанные с отказом условия в месте нахождения внешнего экипажа БАС-ВТ, которые могут влиять на способность внешнего экипажа справиться с прямыми последствиями, например: наличие дыма внутри СВП, прерывание связи, резкое негативное изменение микроклимата внутри СВП и т.п.
- (f) Действия внешнего экипажа. При анализе последствий определенного отказного состояния (функционального отказа, вида отказа системы), должны учитываться вероятность отказа (отказов), наличие и характер сигнализации (информации) об отказе, сложность действий внешнего экипажа, а также периодичность соответствующей тренировки внешнего экипажа.
- (g) Операции с отказными состояниями и внешними воздействиями (явлениями). анализе последствий отказных состояний (функциональных отказов, видов отказов систем) учитывать необходимо критичные (определяющие) внешние воздействия (явления) и их вероятность. Эксплуатационные ограничения должны устанавливаться с учетом вероятности внешних воздействий (явлений) и отказных состояний (видов отказов систем), характеристик БАС-ВТ, точности автоматического и других доступных видов пилотирования, также погрешностей бортовых систем и оборудования.

БАС-ВТ.0.4. Приемлемые методы

- (а) [Зарезервирован]
- (b) Соответствие требованиям настоящего раздела и БАС-ВТ.1309(b) должно доказываться

применимы пункты БАС-ВТ.0.3(b) и (или) БАС-ВТ.0.3(g)) или анализа и расчета (для прочих БАС-ВТ) вероятностей возможных видов отказов функциональных систем и оценки влияния этих отказов на безопасность полета. Такая оценка должна проводиться для каждой системы отдельно и во взаимосвязи с другими системами и (при необходимости) подкрепляться наземными и (или)

ипи

испытаниями,

испытаний,

стенле

(для БАС-ВТ,

анализа

- моделированием. (1) Анализ должен включать в себя возможные виды отказов (в том числе вероятные сочетания видов отказов в различных системах), оценку вероятностей этих видов отказов, последствия для БАС-ВТ, в том числе для находящихся на борту учетом этапа людей, полета, условий эксплуатации и внезапности для внешнего соответствующего экипажа возникновения отказного состояния, требуемые действия по парированию, возможность обнаружения отказа, процедуры контроля состояния и обслуживания
- (2) При анализе конкретных систем может быть учтен опыт эксплуатации аналогичных систем.
 - (с) [Зарезервирован]
 - (d) [Зарезервирован]
 - (е) [Зарезервирован]
 - (f) [Зарезервирован]
- (g) Отказное состояние (функциональный отказ, вид отказа системы) может быть отнесено к событиям практически невероятным, если выполняется одно из следующих условий:
- (1) Указанное состояние возникает в результате двух и более независимых последовательных отказов различных элементов рассматриваемой системы или взаимодействующих с ней систем с вероятностью менее 10⁻⁹ на час полета по типовому профилю; или
- (2) Указанное состояние является следствием конкретного механического отказа (разрушения, заклинивания, рассоединения) одного из элементов системы и Разработчик может обосновать практическую невероятность такого отказа, используя для доказательства:
 - (i) Анализ схемы и реальной конструкции.
- (ii) Статистическую оценку безотказности подобных конструкций за длительный период эксплуатации (при наличии необходимых данных).
 - (ііі) Результаты испытаний по установлению

назначенного ресурса соответствующих элементов согласно требованиям разделов НЛГ БАС-ВТ или установления других ограничений контролируемых параметров допустимого предотказного состояния.

- (iv) Анализ принципов контроля качества изготовления и применяемых конструкционных материалов в серийном производстве, а также стабильности технологических процессов.
- (v) Анализ предусмотренных эксплуатационной документацией средств, методов и периодичности технического обслуживания.

Примечание: В тех случаях, когда рассматривается конкретный короткий этап (участок) полета, его продолжительность может учитываться при оценке вероятности единичных и множественных отказов.

- (h) Для доказательства соответствия БАС-ВТ требованиям пункта БАС-ВТ.0.3(c)(2) должно быть дополнительно выполнено одно из следующих условий:
- (1) Отказное состояние (вид отказа системы) возникает в результате сочетания двух и более независимых последовательных отказов:
- (2) Отказное состояние может быть отнесено к практически невероятным в соответствии с пунктом БAC-BT.0.3(g)(2);
- (3) Отказное состояние является следствием конкретного механического отказа типа заклинивания одного из элементов системы и может быть отнесено к событию не более частому, чем крайне маловероятное, на основании анализа принятых конструктивных решений и результатов опыта эксплуатации аналогичных конструкций, учитывающего используемые принципы контроля изготовления применяемые конструкционные серийном материалы производстве, стабильность технологических процессов, также предусмотренные эксплуатационной документацией средства, технического методы периодичность обслуживания.
- $(i^*)\, B$ случае, если отказное состояние (вид отказа системы) приводит к возникновению аварийной ситуации (аварийного эффекта) и не

- отнесено к категории практически невероятных, РЛЭ содержать рекомендации, должно позволяющие внешнему экипажу принять все возможные меры для предотвращения перехода аварийной ситуации В катастрофическую. Желательно, чтобы указанные рекомендации были проверены в летных испытаниях. В тех случаях, когда лётная проверка связана с повреждениями БВС ВТ, с особо высокой степенью риска или нецелесообразна, разработанные заведомо рекомендации должны подтверждаться результатами анализа опыта эксплуатации других БАС-ВТ, близких пο конструкции сертифицируемому, или результатами соответствующих испытаний, стендовых моделирования, испытаний расчетов, пилотажном стенде.
- (i) B случае, если отказное состояние (функциональный отказ, вид отказа системы) приводит к возникновению сложной ситуации (значительного эффекта) и не отнесено к категории практически невероятных, РЛЭ должно содержать указания внешнему экипажу по завершению полета в этом случае. Указания РЛЭ по действиям в сложных ситуациях должны быть проверены в лётных испытаниях и не должны требовать от внешнего экипажа чрезмерных усилий и необычных приемов пилотирования. В отдельных случаях, когда конструкция БАС-ВТ и систем не обеспечивает возможности имитации какого-либо вида отказа в лётных испытаниях. допускается проверка РЛЭ соответствующих указаний путём моделирования или испытаниях на пилотажном стенде.
- (k) B случае, если отказное (функциональный отказ, вид отказа системы) приводит к усложнению условий полета, РЛЭ должно содержать указания внешнему экипажу по продолжению полета, методам эксплуатации систем и парированию неисправностей в полете. Если при этом отказное состояние (вид отказа пилотирование, системы) влияет на рекомендации РЛЭ должны быть проверены летными испытаниями, моделированием испытаниями на пилотажном стенде.

РАЗДЕЛ В – ПОЛЕТ

пределов.

ОБЩИЕ ТРЕБОВАНИЯ

БАС-ВТ.21. Доказательство соответствия

Каждое требование данного раздела должно быть установлено при каждом целесообразном сочетании веса и положения центра тяжести в пределах условий загрузки, для которых запрашивается сертификат. Это должно быть продемонстрировано:

- (а) Посредством испытаний БВС-ВТ, на которое запрашивается сертификат типа, или путем расчетов, основанных на результатах испытаний и равных им по точности.
- (b) Посредством систематического исследования каждого требуемого сочетания веса и положения центра тяжести, если невозможно сделать обоснованный вывод о соответствии по данным ранее исследованных сочетаний.
- (c) В процессе летных испытаний разрешаются следующие величины допустимых отклонений параметров.

Масса. Пределы допуска: +5%, -10%;

Критические параметры, зависящие от массы. Пределы допуска: +5%, -1%;

Центровка. Пределы допуска: $\pm 7\%$ от полного диапазона.

Для отдельных испытаний могут быть разрешены большие допуски.

БАС-ВТ.22. Одобренные эксплуатационные режимы полета

- (а) Заявитель должен определить пределы допустимых эксплуатационных режимов полета, в которых будет продемонстрирован безопасный полет при нормальных и аварийных условиях, а также возможности аварийной посадки. При определении этих границ необходимо учитывать окружающие условия (например, скорость ветра, температура наружного воздуха, высота взлётной или посадочной площадки над уровнем моря, географические координаты, освещенность).
- (b) БАС-ВТ должен иметь соответствующую систему защиты, которая бы исключала БВС-ВТ возможность выхода за границы допустимых режимов полета в соответствии с БАС-BT.1329(b) требованием пункта предотвращения преднамеренного нарушения их

БАС-ВТ.24. Условия транспортировки, реконфигурации и хранения

- (а) В случае, если БАС-ВТ или его часть спроектированы таким образом, что они являются полностью или частично транспортабельными при нормальной эксплуатации, Заявителем должны быть установлены условия транспортировки и хранения.
- (b) В случае, если БАС-ВТ или его часть требует для транспортировки разборки или реконфигурации, должно быть показано, что ожидаемое в течение срока эксплуатации число циклов разборки/сборки или реконфигурации не окажет негативного влияния на соответствие БАС-ВТ применимым к нему требованиям настоящих НЛГ.
- (с) При определении условий транспортировки и хранения, указанных в (а), Заявитель должен учитывать воздействия окружающей среды, такие как скорость ветра, освещённость и т.д. а также ударные и вибрационные нагрузки, воздействие воды, влажности, твёрдых частиц в атмосфере, электромагнитные, температурные воздействия и любые другие ожидаемые воздействия или условия, которые могут оказывать влияние на БАС-ВТ в течение его транспортировки или хранения.
- (d) Никакое воздействие окружающей среды, возможное при транспортировке, реконфигурации или хранении БАС-ВТ не должно оказывать негативное влияние на соответствие БАС-ВТ применимым к нему требованиям настоящих НЛГ.
- (е) Заявитель должен оформить инструкцию по правильному обращению с БАС-ВТ при транспортировке, сборке/разборке или реконфигурации и хранению. Такая инструкция должна соответствовать требованиям Приложения А.

БАС-ВТ.25. Ограничения по массе

(а) Максимальная масса БВС-ВТ — наибольшая масса, для которой продемонстрировано соответствие требованиям настоящих НЛГ. Максимальная масса БВС-ВТ устанавливается в качестве эксплуатационного ограничения, превышение максимальной массы БВС-ВТ в эксплуатации не допускается.

18 Нормы лётной годности НЛГ БАС-ВТ

Максимальная масса БВС-ВТ должна быть установлена таким образом, чтобы она не превышала наименьшее из следующих значений:

- (1) наибольшей массы, выбранной Заявителем;
- (2) максимальной расчетной массы, которой продемонстрировано соответствие каждому применимому условию нагружения конструкции, указанному в настоящих НЛГ;
- (3) наибольшей массе, при которой показано соответствие требованиям настоящих Норм к летным характеристикам БВС-ВТ.
- (b) Минимальная масса наименьшая масса БВС-ВТ, при которой показывается соответствие всем применимым требованиям настоящих НЛГ. Минимальная масса БВС-ВТ устанавливается в эксплуатационного качестве ограничения, эксплуатации БВС-ВТ C массой минимальной не допускается. Минимальная масса БВС-ВТ должна быть установлена таким образом, чтобы она не была меньше наибольшего из следующих значений:
 - (1) наименьшей массы, выбранной Заявителем;
- (2) минимальной расчетной массы, при которой соответствие продемонстрировано применимому условию нагружения конструкции, содержащемуся в настоящих НЛГ; или
- (3) минимальной определённой массы, соответствии с пунктом БАС-ВТ.29.
- (с) Общая масса со сбрасываемым внешним грузом. Общая масса БВС-ВТ со сбрасываемым внешним грузом, превышающая максимальную массу, установленный согласно (а), может быть установлена для комбинаций «БВС-ВТ - груз», если:
- (1) в комбинации «БВС-ВТ груз» внешний груз не включает в себя человека;
- (2) получено одобрение конструкции БАС-ВТ для эксплуатации с грузом на внешней подвеске в соответствии с требованием БАС-ВТ.865 или эквивалентными эксплуатационными требованиями;
- (3) часть общей массы, которую превышается величина максимальной массы БВС-ВТ, установленной согласно (а), приходится только на массу сбрасываемого внешнего груза или на его часть;
- (4) продемонстрировано соответствие конструкции БВС-ВТ элементов каждому применимому требованию конструкции, К НЛГ, содержащемуся настоящих при увеличенных нагрузках напряжениях, обусловленных увеличением массы сверх величины, установленной согласно (а);
- (5) Эксплуатация БАС-ВТ с общей массой БВС-ВТ, превышающей максимальную массу, определенную согласно (a), удовлетворяет

эксплуатационным соответствующим ограничениям, установленным в соответствии с пунктами БАС-ВТ.865(а)(с).

БАС-ВТ.27. Ограничения по положению центра тяжести

Должен быть установлен безопасный диапазон положений центра тяжести БВС-ВТ, в пределах которого обеспечена возможность его безопасной эксплуатации. При установлении безопасного диапазона должны быть учтены поперечные положения центра тяжести в том случае, если различные варианты загрузки БВС-ВТ могут оказать значительное влияние на эти положения. Установленный безопасный диапазон положений центра тяжести БВС-ВТ не может превышать следующих ограничений:

- (а) Диапазонов, выбранных Заявителем;
- (b) Диапазонов, В пределах которых подтверждена безопасность конструкции БВС-ВТ;
- (с) Диапазонов, в которых продемонстрировано соответствие применимым требованиям Раздела В.

БАС-ВТ.29. Macca пустого БВС-ВТ соответствующее положение центра тяжести

- (а) Масса пустого БВС-ВТ и соответствующее положение центра тяжести должны определяться по материалам взвешивания БВС-ВТ при наличии:
 - (1) Постоянного балласта;
- (2) Невырабатываемого остатка топлива, установленного согласно БАС-ВТ.959;
 - (3) Установленных батарей;
- (4) Полной заправки эксплуатационных жидкостей, включая:
 - (i) Mасло;
 - (іі) Гидравлическую жидкость; и
- (ііі) Другие жидкости, необходимые нормальной эксплуатации систем БВС-ВТ.
- (b) Комплектация БВС-ВТ при определении веса пустого должна быть такой, которая хорошо определяется и может быть легко повторена.

БАС-ВТ.31. Съемный балласт

При демонстрации соответствия требованиям, предъявляемым к полету в разделе В, может использоваться съемный балласт.

БАС-ВТ.33. Ограничения по частоте вращения и шагу несущего винта

(а) Ограничения по частоте несущего винта. Диапазон частот вращения несущего винта должен устанавливаться таким, чтобы:

- (1) При подаче мощности имелся необходимый запас для изменения частоты вращения несущих винтов при выполнении любого необходимого маневра с учетом используемого типа регулятора или синхронизатора.
- (2) При отсутствии мощности обеспечивалась возможность выполнения любого необходимого маневра на режиме авторотации, включая посадку, во всех диапазонах изменения скорости полета и массы, на которые запрашивается сертификат.
- (b) **Нормальные** ограничения большого шага несущего винта (при подаче мощности). Для БВС-ВТ, за исключением БВС-ВТ, которые согласно пункту БАС-ВТ.33(е) должны иметь сигнализацию о приближении частоты вращения несущего винта к минимально допустимому значению, требуется показать, что частота вращения несущего винта не будет минимально допустимого значения ни при каком продолжительном режиме полета с двигателями, работающими пределах установленных максимальных ограничений. Это должно обеспечиваться одним из следующих способов:
- (1) соответствующей установки упора большого шага несущего винта;
- (2) выбора собственных характеристик БВС-ВТ в пределах, которые не допускают возможности появления опасно малых частот вращения несущего винта;
- (3) применения соответствующих средств сигнализации, предупреждающих внешнего пилота о возникновении опасных частот вращения несущего винта.
- (c) **Нормальные ограничения малого шага несущего винта.** При отсутствии мощности необходимо показать, что:
- (1) нормальное ограничение малого шага несущего винта обеспечивает необходимую частоту вращения при выполнении режима авторотации при наиболее критических сочетаниях массы и воздушной скорости;
- (2) возможно предотвратить повышение частоты вращения несущих винтов, не прибегая к действиям, требующим реализации сложной логики и алгоритмов управления.
- (d) Аварийный большой шаг несущего винта. Если в соответствии с подпунктом БАС-ВТ.33(b)(1) установлен упор большого шага несущего винта и если при этом исключена возможность случайного выхода за пределы этого упора, то может быть предусмотрен аварийный большой шаг.
- (e) Сигнализация о приближении частоты вращения несущего винта БВС-ВТ к

- **минимальному значению.** На СВП должна быть предусмотрена сигнализация о приближении частоты вращения несущих винтов БВС-ВТ к минимальному значению, отвечающая следующим требованиям:
- (1) Сигнализация для внешнего пилота о приближении частоты вращения несущих винтов к значению, при котором может быть нарушена безопасность полета, должна обеспечиваться на всех режимах полета, включая полет с работающим и неработающим двигателем.
- (2) Сигнализация должна быть ясной и четкой при всех условиях и должна быть ясно отличимой от любой другой сигнализации.
- (3) Сигнализация должна автоматически отключиться и возвращаться в исходное состояние при условии, что низкая частота вращения устранена. Если в устройстве предусмотрена звуковая сигнализация, то оно должно быть оборудовано средством, позволяющим внешнему пилоту вручную отключить звуковую сигнализацию до устранения низкой частоты вращения.
- (f) Если БВС-ВТ конструктивно не способен выполнять полёт на режиме авторотации (например, имеет мультироторную конструкцию) необходимо применение системы спасения, обеспечивающей приземление БВС-ВТ исключающей скоростью, его опасное разрушение.

ЛЕТНЫЕ ДАННЫЕ

БАС-ВТ.45. Общие положения

- (а) Требования к летным характеристикам данного раздела должны удовлетворяться в спокойном воздухе и в условиях стандартной атмосферы, если не предписано иное.
- (b) Летные характеристики должны быть определены при располагаемой мощности двигателя, при конкретных внешних атмосферных условиях, на конкретном режиме полета и исходя из 80%-ной относительной влажности воздуха и конкретных условий полета.
- (с) Располагаемая мощность должна соответствовать мощности двигателя, не превышающей одобренную мощность, с учетом потерь мощности, потребляемой вспомогательными устройствами и средствами в соответствии с конкретными внешними атмосферными условиями и конкретным режимом полета.

БАС-ВТ.49. Летные данные при минимальной

Нормы лётной годности НЛГ БАС-ВТ

эксплуатационной скорости

- (а) Потолок висения должен определяться в пределах диапазонов масс, высот и температур, для которых запрашивается сертификат, при:
 - (1) При мощности, не превышающей взлетную;
 - (2) При выпущенном шасси;
- (3) При нахождении БВС-ВТ в зоне влияния земли на высоте, соответствующей процедуре нормального взлета;
- (4) При нахождении БВС-ВТ вне зоны влияния земли (статический потолок).

БАС-ВТ.51. Взлёт

БВС-ВТ Для выполнение взлёта использованием мощности, не превышающей взлётную, и частоты вращения несущего винта, не превышающей наиболее взлётную, при неблагоприятных сочетаниях положения центра тяжести и максимальной взлётной массы БВС-ВТ должно выполняться таким образом, чтобы в случае отказа двигателя в любой точке траектории полета была возможна контролируемая посадка, которая может быть выполнена при следующих **условиях**:

- (а) для выполнения не требуется исключительно высокое мастерство пилотирования или исключительно благоприятные условия;
- (b) при высотах для взлета и посадки от стандартных условий на уровне моря до максимальной высоты, на которую запрашивается сертификат типа.

БАС-ВТ.65. Набор высоты

- (а) Вертикальная скорость БВС-ВТ должна определяться в условиях атмосферы, соответствующих уровню моря, при продолжительной максимальной мощности двигателя при максимальной массе.
- (b) Установившийся градиент набора высоты БВС-ВТ должен определяться:
- (1) при скорости набора высоты, выбранной Заявителем, не превышающей V_{NE} ;
- (2) в пределах диапазона высот, на который запрашивается сертификат типа;
- (3) при значениях массы и температуры, соответствующих диапазону высот, для которых запрашивается сертификат типа.

БАС-ВТ.71. Режим авторотации БВС-ВТ

(а) Для БАС-ВТ, для которых запрашивается одобрение режима авторотации, скорость полета,

- соответствующая минимальной вертикальной скорости снижения, и скорость полета, соответствующая наивыгоднейшему углу авторотации, должны определяться на режиме авторотации при:
 - (1) максимальной взлетной массе;
- (2) частоте вращения несущего винта, выбранной заявителем для демонстрации соответствия.

БАС-ВТ.75. Посадка

- (а) БВС-ВТ должен быть способен выполнять посадку без чрезмерного вертикального ускорения, опасных для сохранения лётной годности изделия тенденций к подпрыгиванию, капотированию, неуправляемому развороту на земле. Выполнение захода на посадку и посадка не должны требовать исключительно высокого мастерства пилотирования или исключительно благоприятных условий при скоростях захода на посадку или планирования, соответствующих типу БВС-ВТ и выбранных заявителем.
- (b) Для БАС-ВТ, для которых запрашивается одобрение режима авторотации, выполнение захода на посадку и посадка с режима установившегося самовращения несущего винта (авторотации) в случае отказа силовой установки или навигационной системы (при работающей системе автоматического управления) должны быть показаны в испытаниях.
- (c) Выполнение условий (a) должно быть продемонстрировано на максимальном удалении от внешнего пилота, осуществляющего управление БВС-ВТ.

БАС-ВТ.87. Зона опасных сочетаний высоты и скорости «H-V»

- (а) Если для БАС-ВТ существует какое-либо сочетание высоты и поступательной скорости (включая режим висения), при котором не может быть выполнена безопасная посадка при условиях потери мощности, применимых в соответствии с (b), то необходимо установить зону ограничений по высоте и скорости (включая всю имеющую отношение информацию) для этих условий в диапазонах:
- (1) Высот от величины, соответствующей стандартным условиям на уровне моря до максимальной возможной для данного БВС-ВТ или 2134 м высоты по плотности, в зависимости от того, какое значение высоты меньше; и
- (2) Значений массы в пределах от максимальной величины на уровне моря до массы, выбранного Заявителем для каждой высоты,

НЛГ БАС-ВТ

оговоренной (a)(1). Для БВС-ВТ масса на высотах, превышающих уровень моря, не может быть меньше, чем максимальная масса или наибольшая масса, при которой обеспечивается висение вне зоны влияния земли, в зависимости от того, какая из величин меньше.

- (b) Применимые случаи потери мощности:
- (1) для однодвигательных БВС-ВТ полная авторотация;
- БВС-ВТ (2) для многодвигательных неработающим критическим двигателем (если обеспечивает независимость двигателя продолжительную работу остальных двигателей), и работа остальных двигателей в одобренных пределах минимальной мощности, при установленной спецификацией, возможных для наиболее критической комбинации одобренной окружающей температуры среды барометрической высоты, до высоты 2134 м по плотности или максимально возможной высоты для БВС-ВТ, в зависимости от того, какая из величин меньше;
- (3) для БВС-ВТ другого типа условия, соответствующие рассматриваемому типу.

ПОЛЕТНЫЕ ХАРАКТЕРИСТИКИ

БАС-ВТ.141. Общие положения

БВС-ВТ должно:

- (а) Удовлетворять требованиям к летным характеристикам этого раздела, если иное специально не оговорено в соответствующем пункте:
- (1) при ожидаемых в эксплуатации значениях высоты и температуры;
- (2) при любых критических условиях загрузки в пределах диапазонов весов и положений центра тяжести, на которые запрашивается сертификат;
- (3) при любых значениях скорости, мощности и частоты вращения несущих винтов, для которых запрашивается сертификат и которые имеют место в случае подачи мощности на несущие винты; и
- (4) БАС-ВТ, для которых запрашивается одобрение режима авторотации, при любых значениях скорости и частоты вращения несущих винтов, на которые запрашивается сертификат, в случае отсутствия подачи мощности на винты, и которые достижимы при управлении в соответствии с утверждёнными Руководствами и ограничениям.
- (b) Обеспечивать выполнение внешним пилотом любого требуемого режима полета и плавного перехода из одного режима полета на другой и не создавать опасности превышения

ограничения по перегрузке на любом эксплуатационном режиме, на который запрошен Сертификат.

БАС-ВТ.143. Управляемость и маневренность

- (a) БВС-ВТ должно быть безопасно управляемым и маневренным:
 - (1) на установившихся режимах полета; и
- (2) при выполнении любого маневра, приемлемого для данного типа БВС-ВТ, включая:
 - (і) взлет;

21

- (іі) набор высоты;
- (iii) горизонтальный полет;
- (iv) разворот;
- (v) посадку с работающими двигателями.
- (3) в дополнение к режимам, указанным в (2), БАС-ВТ, для которые запрашивается одобрение режима авторотации, при выполнении следующих маневров:
 - (і) авторотация;
- (ii) посадка с неработающими двигателями или неработающими критическим двигателем;
- (iii) переход к полету с использованием мощности при прерванном заходе на посадку на режиме авторотации.
- (b) Системы управления, используемая для управления БВС-ВТ по курсу, крену, тангажу и вертикальному движению должны иметь запасы, обеспечивающие удовлетворительное управление по крену и тангажу на скорости V_{NE} при:
 - (1) критической массе;
 - (2) критическом положении центра тяжести;
- (3) критической частоте вращения несущего винта:
 - (4) работающих двигателях;
- (5) для БАС-ВТ, для которой запрашивается одобрение режима авторотации неработающих двигателях.
- (с) Должно быть показано при скорости ветра не менее 9 м/с, что БВС-ВТ может эксплуатироваться без потери управляемости при работе на земле или вблизи земли при выполнении любого маневра, соответствующего данному типу (такого, как взлет при боковом ветре, эволюции вбок и назад), при:
 - (1) критической массе;
 - (2) критическом положении центра тяжести;
- (3) критической частоте вращения несущего винта;
- (4) высоте, от стандартных условий на уровне моря до максимальной высоты выполнения взлета и посадки данного БВС-ВТ.
- (d) БВС-ВТ, для которых запрашивается одобрение режима авторотации, должны быть управляемым после полного отказа силовой

22 Нормы лётной годности НЛГ БАС-ВТ

установки на режимах, когда отказ работы двигателя происходит на режиме максимально продолжительной мощности и при критической массе в эксплуатационном диапазоне скоростей и высот, для которых заявлена сертификация. Корректирующие действия внешнего пилота, если таковые требуются для безопасного продолжения полёта, при всех условиях эксплуатации не должны превышать время меньше, чем:

- (1) одна секунда или время нормальной реакции внешнего пилота плюс время, необходимое для прохождения команды от органа управления на СВП до исполнительного механизма БВС-ВТ (в зависимости от того, какая величина больше) – для крейсерского полета; и
- (2) время нормальной реакции внешнего пилота плюс время, необходимое для прохождения команды от органа управления на СВП до исполнительного механизма БВС-ВТ на других режимах.
- многодвигательных БВС-ВТ, (е) Для запрашивается одобрение которых авторотации, на которых V_{NE} (при неработающем двигателе) продемонстрирована согласно БАС-BT.1505(c), должно быть установлено соответствие нижеследующим требованиям при критической массе, критическом положении центра тяжести и критической частоте вращения
- бортовой системой автоматического управления должно обеспечиваться безопасное уменьшение скорости БВС-ВТ до скорости $V_{\rm NE}$ (при неработающем двигателе), в случае отказа двигателя при максимальной скорости горизонтального полета V_{NE} с работающими

несущего винта:

(2) На скорости от $1,1 V_{NE}$ (при неработающем двигателе) запас циклического управления должен обеспечивать удовлетворительное управление по крену и тангажу при полной потере мощности.

БАС-ВТ.171. Устойчивость. Обшие положения

- (а) Пилотирование БВС-ВТ при выполнении нормальных маневров в течение характерного времени полета при эксплуатации не должно приводить к чрезмерному утомлению напряжению внешнего пилота. Для демонстрации соответствия необходимо выполнить, по меньшей мере, три взлета и посадки.
- (b) При всех режимах функционирования системы управления, на которые запрашивается сертификат, автоматическом, автоматизированном или ручном управлении БВС-ВТ, показатели устойчивости и управляемости при нормальной работе систем должны отвечать требованиям

БАС-ВТ.171, БАС-ВТ.177 в ожидаемых условиях эксплуатации.

- (с) При изменении режимов состояния системы управления полетом или условий полета в случаях автоматического, автоматизированного ручного управления полетом БВС-ВТ, в том числе в случае деградации режимов, а также вероятных отказах датчиков или программного обеспечения, должна сохраняться по крайней мере продольная и боковая устойчивость и приемлемые переходные показатели демпфирования в каналах управления при сохранении траектории полета.
- (d) Для подтверждения указанных характеристик пункта БАС-ВТ.171(b), полученных моделированием и расчетами, характеристики устойчивости быть должны подтверждены соответствующими данными летных испытаний.
- (е) Характеристики устойчивости БВС-ВТ должны быть оценены при условии ручного управления внешним пилотом, если на такой режим запрашивается Сертификат, с учетом реакции канала передачи данных и управления и обеспечивать и предотвращение выхода БВС-ВТ за установленные ограничения.
- (f) Должны быть оценены непредумышленные колебания исполнительных органов управления полетом, вызванные моторикой рук пилота, для обеспечения безопасного управления применимо к заявленной на сертификацию конструкции).

БАС-ВТ.177. Путевая устойчивость

- (а) При постоянной мощности двигателя и общего шага несущего винта должна иметь место устойчивость. Путем увеличения путевая отклонений органа путевого управления (если применимо ручное управление) должно быть продемонстрировано сбалансированное возрастание угла скольжения вплоть до $\pm 10^{\circ}$. **Должно** предусмотрено средство оповещения внешнего пилота о приближении к значениям угла скольжения в предельным процессе управления. Система управления может обеспечивать автоматическую координацию разворотов БВС-ВТ и соответствующую систему предупреждения внешнего ограничениях.
- (b) Характеристики путевой и поперечной устойчивости БВС-ВТ на эксплуатационных режимах, в том числе при заходе на посадку с боковым ветром, должны быть такими, чтобы при парировании возмущений, заданных в ожидаемых условиях эксплуатации, не возникло опасных эволюций БВС-ВТ.
 - (с) Если на БАС-ВТ предусмотрен режим

прямого ручного управления, на режиме установившегося горизонтального полета условиях спокойной атмосферы в диапазоне скоростей от скорости наивыгоднейшего набора до крейсерской сбалансировать БВС-ВТ и зафиксировать органы управления в нейтральном положении, то в течение времени не менее 10 с после этого БВС-ВТ не должно выходить за пределы эксплуатационных ограничений.

ХАРАКТЕРИСТИКИ УПРАВЛЯЕМОСТИ НА ЗЕМЛЕ И НА ВОДЕ

БАС-ВТ.231. Общие положения

конструкция БВС-ВТ обеспечивает возможность управления перемещением БВС-ВТ на земле или на воде, и такие режимы заявлены на сертификацию, БВС-ВТ должно обладать характеристиками удовлетворительными управляемости на земле и на воде, причем неуправляемости тенденции К должны отсутствовать в любых условиях, ожидаемых в эксплуатации.

БАС-ВТ.235. Руление

Если конструкция БВС-ВТ обеспечивает возможность управления перемещением БВС-ВТ на земле и данный режим заявлен БВС-ВТ сертификацию, должно спроектирован так, чтобы выдерживать нагрузки, которые будут возникать при рулении по наиболее неровной поверхности, обоснованно ожидаемой в условиях нормальной эксплуатации.

БАС-ВТ.239. Характеристики брызгообразования

Если конструкция БВС-ВТ предусматривает возможность управления перемещением БВС-ВТ на воде при нормальной эксплуатации и данный режим заявлен на сертификацию, то воздействие брызгообразования при рулении, взлете и посадке не должно затруднять обзор для внешнего пилота, как прямой визуальный, так и с соответствующих камер на борту БВС, изображение с которых транслируется на СВП, или повреждать винты, пропеллеры или другие части БВС-ВТ.

БАС-ВТ.241. Земной резонанс

БВС-ВТ не должно иметь опасной тенденции к колебаниям на земле при вращении несущего винта.

РАЗНЫЕ ЛЕТНЫЕ ТРЕБОВАНИЯ

БАС-ВТ.251. Вибрация

На всех частях БВС-ВТ на каждом режиме при соответствующих скорости и мощности должна отсутствовать опасная для конструкции вибрация.

РАЗДЕЛ С - ПРОЧНОСТЬ

ОБЩИЕ ТРЕБОВАНИЯ

БАС-ВТ.301. Нагрузки

- (а) Требования к прочности установлены в терминах эксплуатационных нагрузок (максимальных нагрузок, ожидаемых в эксплуатации) и расчетных нагрузок (эксплуатационных нагрузок, умноженных на заданные коэффициенты безопасности). Если не оговорено иначе, то задаваемые нагрузки и являются эксплуатационными нагрузками.
- (b) Если не указано иное, то воздушные, наземные и гидродинамические нагрузки должны находиться в равновесии с силами инерции при рассмотрении каждого элемента массы БВС-ВТ.
- (с) Если деформации и смещения, вызванные нагрузками, приводят к существенному перераспределению внешних или внутренних нагрузок, то это перераспределение нагрузок необходимо учитывать при определении нагруженности БВС-ВТ.

БАС-ВТ.302. Взаимодействие систем и конструкций

Для БВС-ВТ, оснащенного системами, которые влияют на показатели прочности либо непосредственно, либо в результате отказа или сбоя, влияние этих систем и их условия отказа должны быть приняты во внимание при показе соответствия требованиям Разделов С и D настоящих Норм.

БАС-ВТ.303. Коэффициент безопасности

Если не оговорено иначе, то необходимо использовать коэффициент безопасности, равный 1,5. Этот коэффициент применяется к внешним нагрузкам и инерционным нагрузкам, если его применение к напряжениям, возникающим под воздействием этих нагрузок, не является более надежным.

БАС-ВТ.305. Прочность и деформации

(а) Конструкция должна быть способна выдерживать эксплуатационные нагрузки без возникновения опасной остаточной деформации. При любых нагрузках, вплоть до

эксплуатационных значений, деформация не должна влиять на безопасность эксплуатации.

- (b) Конструкция должна быть способна выдерживать расчетные нагрузки без разрушения. Это должно быть показано посредством:
- (1) приложения к конструкции расчетных нагрузок в течение как минимум 3-х секунд на статических испытаниях;
- (2) динамических испытаний, имитирующих реальное приложение нагрузок.

БАС-ВТ.307. Доказательство прочности конструкции

- (а) Соответствие требованиям данного раздела к прочности и деформации должно быть показано для каждого расчетного случая нагружения, с которым конструкция может встретиться в Подтверждение эксплуатации. соответствия требованиям настоящего раздела НЛГ к прочности (статической или усталостной) конструкции только результатами расчётов допускается для БАС-ВТ, если данная конструкция соответствует тем конструкциям, для которых, как показал опыт, этот метод является достоверным. В других случаях проведены должны быть обосновывающие испытания.
- (b) Доказательство соответствия требованиям данного раздела к прочности для БАС-ВТ, не подпадающих под действие (a)(1) и (a)(2), должно включать в себя:
- (1) динамические и ресурсные испытания винтов, их приводов и управления;
- (2) испытания системы управления, включая поверхности управления, на расчетную нагрузку;
- (3) испытания системы управления на функционирование;
 - (4) летные испытания по измерению нагрузок;
 - (5) испытания шасси на сброс; и
- (6) любые дополнительные испытания, необходимые при наличии новых или необычных особенностей конструкции.

БАС-ВТ.309. Конструктивные ограничения

Для того, чтобы показать соответствие конструкции требованиям данного раздела, должны быть установлены следующие величины и ограничения:

- (а) Максимальная расчетная масса.
- (b) Диапазоны частот вращения несущего винта при работающем двигателе, также на режиме

авторотации (если запрашивается Сертификат на выполнение такого режима).

- (c) Максимальные поступательные скорости для каждой частоты вращения несущего винта в пределах диапазонов, установленных согласно пункту (b).
- (d) Максимальные скорости полета назад и вбок.
- (e) Предельные центровки, соответствующие ограничениям, установленным согласно (b), (c) и (d).
- (f) Передаточные числа между каждой силовой установкой и каждым связанным с ней вращающимся элементом.
- (g) Положительные и отрицательные эксплуатационные перегрузки при маневре.

НАГРУЗКИ В ПОЛЕТЕ

БАС-ВТ.321. Общие положения

- (а) Полетная перегрузка должна рассматриваться действующей перпендикулярно к продольной оси БВС-ВТ и равной по величине, но противоположной по направлению, инерционной перегрузке в центре тяжести.
- (b) Соответствие требованиям данного раздела к нагрузкам в полете должно быть показано при:
- (1) каждом значении массы от минимальной расчетной до максимальной расчетной массы;
- (2) любом практически осуществимом распределении целевой нагрузки в пределах эксплуатационных ограничений, содержащихся в Руководстве по летной эксплуатации БАС-ВТ.
- (c) Маневры при определении полетных нагрузок и их возможные комбинации (с учетом возможностей БАС с БВС-ВТ) рассматривать с учетом управления мощностью и параметрами осевых нагрузок. Для определения нагрузок на БВС-ВТ должны быть рассмотрены:
- (1) маневры, предполагаемые для данного БВС-ВТ;
- (2) маневры с учетом отказов систем БВС-ВТ, если вероятность возникновения этих отказов чрезвычайно высокая.
- (d) Предполагаемые маневры БВС-ВТ могут быть основаны на простых маневрах (симметрические маневры, маневры отклонения от курса), типа определенных в БАС-ВТ.337-БАС-ВТ.341 и БАС-ВТ.351.

БАС-ВТ.337. Эксплуатационная перегрузка при маневре

БВС-ВТ должно быть спроектировано так,

чтобы:

- (а) Эксплуатационная перегрузка при маневре находилась в диапазоне от положительного значения (плюс) 3,5 до отрицательного значения (минус) 1,0 для винта с классической втулкой или до положительных значений для винта с втулкой типа «качалка»; или
- (b) Любая меньшая эксплуатационная перегрузка при маневре была не менее плюс 2,0 и не более чем минус 0,5, если:
- (1) Показывается аналитически и посредством летных испытаний, что возможность превышения этих значений является крайне маловероятной;
- (2) Выбранные величины перегрузок соответствуют всем значениям массы в пределах диапазона масс от максимального расчетного до минимального расчетного.
- (с) Для маневренных БВС-ВТ, которые в полёте при нормальной эксплуатации могут достигать больших перегрузок, чем указано в настоящем Заявителем представляются пункте, доказательства что БВС-ВТ спроектирован так, чтобы сохранять лётную годность воздействии перегрузок. максимальных положительных и отрицательных перегрузок подлежат согласованию Уполномоченным органом.

БАС-ВТ.339. Результирующие эксплуатационные нагрузки при маневре

эксплуатационной При использовании перегрузки при маневре предполагается, что нагрузки действуют в центре втулки несущего винта и на каждую вспомогательную несущую поверхность, направлениях распределениях нагрузки между несущими вспомогательными винтами несущими поверхностями таким образом, чтобы представить расчетный режим маневрирования, каждый включая полеты с работающим и неработающим двигателем при максимальной расчетной характеристике режима работы несущего винта. Характеристика режима работы несущего винта µ представляет собой отношение составляющей скорости полета БВС-ВТ в плоскости диска несущего винта к окружной скорости лопастей несущего винта и выражается следующим образом:

$$\mu = \frac{V\cos\alpha}{\omega R}$$

где:

V- воздушная скорость винтокрылого летательного аппарата вдоль траектории полета, м/с;

α – угол между осью вращения винта и линией,

Нормы лётной годности НЛГ БАС-ВТ

перпендикулярной траектории полета, лежащими в плоскости симметрии БВС-ВТ (в радианах, положителен, когда ось вращения отклонена назад относительно этого перпендикуляра);

 ω – угловая скорость вращения винта, рад/с;

R – радиус несущего винта, м.

БАС-ВТ.341. Нагрузки от воздушных порывов

БВС-ВТ должен быть спроектирован таким образом, чтобы выдерживать при любых расчетных скоростях, а также на режиме висения, нагрузки, возникающие вследствие вертикальных и горизонтальных воздушных порывов со скоростью 9,1 м/с (30 футов в секунду).

БАС-ВТ.351. Условия скольжения

- (а) Каждое БВС-ВТ должно быть спроектировано на нагрузки, возникающие в результате следующего маневра: установившемся прямолинейном выполнить наиболее интенсивную из практически реализуемых В нормальной эксплуатации перекладку путевого управления от нейтрального положения до максимального, стабилизировать угол скольжения со значением не менее 15°, после чего выполнить наиболее интенсивный возврат путевого управления в нейтраль, при:
- (1) несбалансированных относительно центра тяжести аэродинамических моментах, действующих на БВС-ВТ, при обоснованном или надежном учете инерционных сил, возникающих на основных массах;
- (2) максимальной частоте вращения несущего винта;
 - (3) скоростях от нуля до V_{NE} .
- (b) Для БВС-ВТ мультироторной конструкции, должно быть показано расчётами испытаниями, что БВС-ВТ спроектирован на нагрузки, возникающие в результате следующего **установившемся** прямолинейном маневра: полёте задать наиболее интенсивный практически реализуемых нормальной эксплуатации режим разности ИПКТ винтов, обеспечивающих управление стабилизировать угол скольжения с меньшим из значений: 15° или максимальный, который может быть получен при нормальной эксплуатации, после чего выполнить наиболее интенсивный возврат БВС-ВТ в полёт без скольжения, при:
- (1) несбалансированных относительно центра тяжести аэродинамических моментах, действующих на БВС-ВТ, при обоснованном или надежном учете инерционных сил, возникающих на основных массах;

(2) скоростях от нуля до V_{NE} .

БАС-ВТ.361. Крутящий момент двигателя

Значение крутящего момента двигателя должно быть не менее, чем для:

- (а) Четырехтактных двигателей, средний крутящий момент на максимальной продолжительной мощности умножается на:
- (1) 1,33 для двигателей с пятью или большим количеством цилиндров;
- (2) 2, 3, 4 или 8 для двигателей с четырьмя, тремя, двумя или одним цилиндром соответственно.
- (b) Двухтактных двигателей, средний крутящий момент на максимальной продолжительной мощности умножается на:
- (1) 2 для двигателей с тремя или большим количеством цилиндров;
- (2) 3 или 6 для двигателей с двумя или одним цилиндром соответственно.
- (c) Для роторных двигателей средний крутящий момент для поддержания продолжительной максимальной мощности, умноженной на:
- (1) 1,33 для двигателей с тремя или большим количеством дисков;
- (2) 2 или 4, для двигателей с двумя или одним диском, соответственно.
- (d) Для газотурбинных двигателей: средний крутящий момент на максимальной продолжительной мощности умножается на 1,25.
- (e) Для электрических двигателей: максимальный крутящий момент можно ожидать во всем диапазоне частот вращения двигателя.

НАГРУЗКИ НА ПОВЕРХНОСТИ И МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫ СИСТЕМЫ УПРАВЛЕНИЯ

БАС-ВТ.391. Общие положения

Рулевой винт, каждая неподвижная или подвижная стабилизирующая поверхность или поверхность управления и каждая система, осуществляющая любое управление полетом, должны удовлетворять требованиям пунктов БАС-ВТ.395, БАС-ВТ.411 и БАС-ВТ.427.

БАС-ВТ.395. Нагрузки в системе управления

- (а) Система управления должна быть спроектирована так, чтобы
- (1) Любая её часть от привода до упоров выдерживала усилия, не менее, чем

27

прикладываемые силовым приводом к тягам управления.

- (2) Любая её часть от упоров до управляющей поверхности выдерживала усилия, не менее, чем возникающие в эксплуатации.
- (b) Если система не допускает приложения эксплуатационных усилий привода, то должна быть продемонстрирована надёжная работа устройства, ограничивающего усилия силового привода до таких значений, которые способна выдерживать любая часть системы управления, от привода до упоров.
- (с) Система управления БВС-ВТ, включая конструктивные элементы ее крепления, должна быть спроектирована следующим образом.
- (1) Независимо от требований (b) система управления должна также выдерживать нагрузки, создаваемые приводами системы управления, в том числе при возникновении вероятных отказов, способных повлиять на условия нагружения системы управления.
- (2) Минимальные принимаемые проектировании нагрузки должны в любом случае прочность эксплуатации, включая такие нагрузки, как усталостные, при заедании, от порывов ветра, инерционные и нагрузки, возникающие при При отсутствии обосновывающего анализа в качестве приемлемых минимальных нагрузок при проектировании можно принять величины нагрузок не менее 0.6 заданных эксплуатационных усилий.
- (3) Для общих устройств и деталей систем управления, общих кронштейнов и мест их крепления должно быть рассмотрено одновременное сочетание нагружения от двух источников нагружения (например, двух винтов управляющих воздействий независимых отношениях продольном поперечном, продольном и общего шага). При этом величину нагрузки, действующую на каждую систему, следует принимать равной 75% от указанных выше нагрузок, действующих при изолированном нагружении.
- (d) Любые системы управления вторичными системами, например, тормозами управления целевой нагрузки, должны быть спроектированы для восприятия максимального усилия, которое К НИМ может приложить исполнительный механизм этой системы, например, актуатор или силовой привод.

БАС-ВТ.411. Клиренс рулевого винта: предохранительное устройство

(а) Во время выполнения нормальной посадки

- должна быть исключена возможность контакта рулевого винта с поверхностью посадочной плошадки.
- (b) Если требуется продемонстрировать соответствие предохранительного устройства для рулевого винта требованиям (a), то:
- (1) Для такого устройства должны быть установлены соответствующие нагрузки при проектировании; и
- (2) Предохранительное устройство и несущая его конструкция должны быть спроектированы так, чтобы они выдерживали эти нагрузки.

БАС-ВТ.427. Несимметричные нагрузки

- (а) Горизонтальное оперение и конструктивные элементы его крепления должны быть рассчитаны на несимметричные нагрузки, возникающие при скольжении и при влиянии спутной струи несущего винта в сочетании с предполагаемыми условиями полета.
- (b) Для удовлетворения расчетным Нормам, приведенным в (a), при отсутствии более надежных данных необходимо обеспечить соответствие следующим двум требованиям:
- (1) 100%-ная максимальная нагрузка при условиях симметричного полета (маневра) должна воздействовать на поверхность с одной стороны относительно плоскости симметрии при нулевой нагрузке на другой стороне;
- (2) по 50% максимальной нагрузки при условиях симметричного полета (маневра) должны воздействовать на поверхность с каждой стороны относительно плоскости симметрии в противоположных направлениях.
- (с) При схемах оперения, когда горизонтальное хвостовое оперение крепится на вертикальном хвостовом оперении, вертикальное хвостовое оперение и конструктивные элементы крепления должны быть рассчитаны на сочетание нагрузок, действующих на вертикальную и горизонтальную поверхности и возникающих при каждом из заданных условий полета, рассматриваемых в отдельности. Условия полета должны выбираться таким образом, чтобы максимальные нагрузки при проектировании воздействовали на каждую поверхность. При отсутствии более точных должны быть приняты варианты данных распределения несимметричных нагрузок на горизонтальное хвостовое оперение, описанные в данном пункте.

НАГРУЗКИ НА ЗЕМЛЕ

БАС-ВТ.471. Общие положения

- (а) **Нагрузки и равновесие.** Для эксплуатационных нагрузок, действующих на земле:
- (1) Эксплуатационными нагрузками, действующими на земле в посадочных условиях, в данных Нормах должны считаться внешние нагрузки, которые имели бы место в конструкции БВС-ВТ, если бы оно рассматривалось как абсолютно жесткое тело;
- (2) На каждом нормируемом условии посадки внешние нагрузки должны быть уравновешены поступательными и вращательными инерционными нагрузками, выбранными обоснованно или с запасом.
- (b) **Критические положения центра тяжести**. Критические положения центра тяжести в пределах диапазона, для которого запрашивается сертификат, должны выбираться так, чтобы получались максимальные расчетные нагрузки в каждом элементе шасси.

БАС-ВТ.473. Условия нагружения на земле и допущения

- (а) Для заданных условий посадки используемый максимальная расчетная масса должна быть не менее максимальной массы. Предполагается, что во время посадочного удара подъемная сила несущего винта приложена в центре тяжести. Эта подъемная сила не может превышать 2/3 максимального расчетной массы.
- (b) Если не оговорено особо, для каждого посадочного режима БВС-ВТ должно быть спроектирован так, чтобы эксплуатационная перегрузка была не менее эксплуатационной инерционной перегрузки, устанавливаемой согласно пункту БАС-ВТ.725.

БАС-ВТ.475. Амортизаторы

Если не оговорено особо, для каждого заданного условия посадки предполагается, что амортизаторы должны находиться в наиболее критическом положении.

БАС-ВТ.501. Условия нагружения на земле: полозковое шасси

(а) **Общие положения**. БВС-ВТ с полозковым шасси должно быть спроектировано на условия нагружения, оговоренные в данном пункте. При демонстрации соответствия данному пункту

используется следующее:

28

- (1) Максимальная расчетная масса, положение центра тяжести и перегрузка должны определяться согласно пунктам БАС-ВТ.471 и БАС-ВТ.473.
- (2) При предельных нагрузках допускается пластическая деформация упругих элементов.
- (3) Расчетные нагрузки при проектировании для упругих элементов не должны превышать нагрузок, полученных при испытаниях шасси на сброс при:
- (і) высоте сброса, равной 1,5 значения высоты, оговоренной в пункте БАС-ВТ.725;
- (ii) подъемной силе винта, не превышающей 1,5 значения от величины, используемой при испытаниях на сброс и оговоренной в пункте БАС-ВТ.725.
- (4) Соответствие пунктам (b)-(e) должно быть показано при:
- (i) опоры шасси в ее предельном отклоненном положении для рассматриваемого условия посадки;
- (ii) реакции от земли, распределенной вдоль нижней поверхности полозка.
- (b) Вертикальные реакции при посадке в горизонтальном положении. В горизонтальном положении при касании земли всей нижней поверхностью обоих полозков шасси БВС-ВТ вертикальные реакции должны быть приложены так, как это оговорено в (a).
- (с) Лобовые реакции при посадке в горизонтальном положении. В горизонтальном положении всей нижней поверхностью обоих полозков шасси БВС-ВТ, применимо следующее:
- (1) вертикальные реакции должны сочетаться с лобовыми горизонтальными реакциями, составляющими 50% от величины вертикальной реакции земли и приложенными в месте касания полозков с землей;
- (2) результирующие нагрузки на земле должны быть равны вертикальной нагрузке, указанной в (b).
- (d) **Боковые нагрузки при посадке в горизонтальном положении**. В горизонтальном положении при касании земли нижней поверхностью обоих полозков шасси БВС-ВТ должно обеспечиваться следующее:
 - (1) Вертикальная реакция земли должна:
- (i) быть равной вертикальным нагрузкам, полученным в условиях, указанных в (b);
- (іі) быть распределена поровну между полозками шасси.
- (2) Вертикальные реакции земли должны сочетаться с горизонтальными боковыми нагрузками, составляющими 25% величины вертикальных реакций.

29

- (3) Полная боковая нагрузка должна быть распределена поровну между полозками и равномерно по длине полозков.
- (4) Принимается, что неуравновешенным моментам противодействуют моменты сил инерции.
- (5) Полозковое шасси должно быть исследовано при:
 - (і) боковых нагрузках, действующих внутрь;
 - (іі) боковых нагрузках, действующих наружу.
- (е) Нагрузки при посадке в горизонтальном положении на один полозок шасси. В горизонтальном положении при касании земли нижней поверхностью только одного полозка шасси БВС-ВТ должно обеспечиваться следующее:
- (1) Вертикальная нагрузка на стороне касания земли должна быть такой же, как и величина, полученная на этой стороне в условиях, указанных в (b).
- (2) Предполагается, что неуравновешенным моментам противодействуют моменты сил инерции.
- (f) Специальные условия. Кроме условий, указанных в (b) и (c), БВС-ВТ должен быть спроектирован из расчета следующих реакций земли:
- (1) Нагрузка от реакции земли, действующая вверх и назад под углом в 45° к продольной оси БВС-ВТ, должна быть:
 - (і) равной 1,33 величины максимальной массы;
- (ii) распределена симметрично между полозками шасси;
- (iii) сосредоточена на переднем конце прямой части полозка; и
- (iv) приложена только к переднему концу полозка и узлу его крепления к БВС-ВТ.
- (2) Вертикальная нагрузка при посадке БВС-ВТ в горизонтальном положении, равная 50% вертикальной нагрузки, определенной согласно (b), должна быть:
- (i) приложена только к полозку и к его креплению к БВС-ВТ;
- (іі) распределена равномерно на 33,3% длины полозка, посередине между узлами его крепления.

БАС-ВТ.505. Условия посадки на лыжи

Если запрашивается сертификат на выполнение операций с лыжным шасси, то БВС-ВТ с лыжным шасси должен быть спроектирован так, чтобы он удовлетворял следующим условиям нагружения (где P — стояночная нагрузка, приходящаяся на каждую лыжу при максимальной расчетной массе БВС-ВТ, n — эксплуатационная перегрузка, определяемая согласно БАС-ВТ.473(b)):

- (а) Условиям действия вертикальной нагрузки вверх, при которых:
- (1) Вертикальная нагрузка, равная P_n , и горизонтальная нагрузка, равная $P_n/4$, приложены одновременно к оси подвески лыжи; и
- (2) Вертикальная нагрузка, равная 1,33*P*, приложена к оси подвески лыжи.
- (b) Условиям действия боковой нагрузки, при которых боковая нагрузка, равная $0.35P_n$, приложена к оси подвески лыжи в горизонтальной плоскости, перпендикулярно осевой линии БВС-ВТ.
- (c) Условию действия крутящего момента, когда крутящий момент, равный 1,33P в N_m , приложен к лыже относительно вертикальной оси, проходящей через осевую линию подшипников опор лыжи.

НАГРУЗКИ НА ВОДЕ

БАС-ВТ.521. Условия посадки на поплавки

Если запрашивается сертификат на эксплуатацию с поплавками, то БВС-ВТ с поплавками должен быть спроектирован так, чтобы он удовлетворял следующим условиям нагружения (эксплуатационная перегрузка определяется соответственно БАС-ВТ.473(b)):

- (а) Условие действия вертикальной нагрузки вверх, при котором:
- (1) Нагрузка прикладывается так, чтобы при стояночном горизонтальном положении БВС-ВТ результирующая сила реакции воды проходила через центр тяжести;
- (2) Вертикальная нагрузка, оговоренная в (а)(1), прикладывается одновременно с составляющей, направленной назад и равной 25% величины вертикальной составляющей.
- (b) Условия действия боковой нагрузки, при котором:
- (1) Вертикальная нагрузка, равная 75% полной вертикальной нагрузки, указанной в (а)(1), распределяется поровну между поплавками; и
- (2) Для каждого поплавка часть нагрузки, определяемая согласно (b)(1), в сочетании с полной боковой нагрузкой, равной 25% величины полной вертикальной нагрузки, указанной в (b)(1), прикладывается только к этому поплавку.

ТРЕБОВАНИЯ К ОСНОВНЫМ ЭЛЕМЕНТАМ КОНСТРУКЦИИ

БАС-ВТ.547. Конструкция несущего и рулевого винтов

- (а) Каждый узел несущего винта (включая втулки и лопасти) должен быть спроектирован соответственно условиям, предписываемым в данном пункте.
- (b) Конструкция винта должна быть спроектирована согласно требованиям данного пункта и должна безопасно функционировать при критических полетных нагрузках и условиях работы. Должна быть произведена оценка конструкции, включая детальный анализ отказов, чтобы установить все отказы, которые могут воспрепятствовать безопасному продолжению полета или безопасной посадке, и должны быть установлены средства, сводящие к минимуму вероятность их возникновения.
- (с) Конструкция несущего винта должна быть спроектирована таким образом, чтобы она выдерживала следующие нагрузки, указанные в пунктах БАС-ВТ.337-БАС-ВТ.341.
 - (1) Критические полетные нагрузки.
- (2) Для БАС-ВТ, на которые запрошен сертификат на режим авторотации, эксплуатационные нагрузки, имеющие место в обычных условиях авторотации. Для этого условия необходимо выбрать частоту вращения винта, которая бы учитывала влияние высоты.
- (d) Конструкция винта должна быть спроектирована так, чтобы выдерживать нагрузки, имитирующие:
- (1) Для лопастей, втулок и горизонтальных шарниров винта силу удара каждой лопасти по ее ограничителю во время эксплуатации на земле;
- (2) Любое другое критическое условие, ожидаемое при нормальной эксплуатации.
- (е) Конструкция винта должна быть спроектирована так, чтобы она выдерживала эксплуатационный крутящий момент при любой частоте вращения, включая нулевую. Кроме того:
- (1) Эксплуатационный крутящий момент не должен быть больше величины крутящего момента, определяемой устройством для ограничения крутящего момента (если оно имеется), и не может быть меньше наибольшего из значений:
- (i) максимального возможного крутящего момента, передаваемого на конструкцию винта в любом направлении при раскрутке винта или при его резком торможении;
- (ii) для несущего винта эксплуатационного крутящего момента двигателя, указанного в

БАС-ВТ.361.

30

(2) Эксплуатационный крутящий момент должен равномерно и обоснованно распределяться по лопастям винта.

БАС-ВТ.549. Конструкция фюзеляжа и пилона винта

- (а) Каждая конструкция фюзеляжа и пилона винта должна быть спроектирована так, чтобы выдерживать:
- (1) Критические нагрузки, указанные в пунктах 5AC-BT.0-0.
- (2) Возможные наземные нагрузки, указанные в пунктах БАС-ВТ.471, БАС-ВТ.473, БАС-ВТ.501, БАС-ВТ.505 и БАС-ВТ.521.
- (3) Нагрузки, указанные в БАС-ВТ.547(d)(2), (e).
- (b) Должны быть учтены тяга рулевого винта, реактивный крутящий момент от системы привода каждого винта, балансировочные аэродинамические и инерционные нагрузки в условиях полета с ускорением.
- (с) Крепление каждого двигателя и примыкающая конструкция фюзеляжа должны быть спроектированы так, чтобы выдерживать нагрузки, имеющие место в условиях полета с ускорением и при посадке, с учетом крутящего момента двигателя (определенного в соответствии с БАС-ВТ.0).

УСЛОВИЯ АВАРИЙНОЙ ПОСАДКИ

БАС-ВТ.561. Общие положения

- (а) Если БВС-ВТ не оснащен системой аварийного прекращения полета, как это предписано БАС-ВТ.1412(а)(1), должны быть предоставлены эксплуатационные характеристики, чтобы позволить эксплуатанту заранее установить в зоне выполнения полёта места для совершения вынужденной посадки. Такие места должны находится на горизонтальном удалении от мест жительства людей и объектов инфраструктуры, равном или превышающем высоту полёта БВС-ВТ на данном участке полёта.
- (b) БВС-ВТ при совершении вынужденной посадки может быть повреждено, тем не менее, оно должно быть спроектировано, как предписано в (c), чтобы минимизировать возможность нанесения вреда третьим лицам на земле в данных условиях.
- (c) БВС-ВТ должно обладать характеристиками автономности в той степени, в которой это будет осуществимо, и должно быть спроектировано

таким образом, чтобы:

- (1) разлёт частей (под частями понимаются элементы конструкции, которые требуют рассмотрения, в том числе несущие винты, системы передачи, двигатели и целевую нагрузку и другие, которые целесообразно рассматривать в рамках данного пункта), которые могут представлять потенциальную угрозу нанесения травм третьим лицам за пределами зоны вынужденной посадки, был маловероятным;
- (2) БВС-ВТ или его части не являлись источником возгорания или утечки воспламеняющихся жидкостей в опасных количествах в случае аварийной вынужденной посалки:
- (3) любой взрыв после вынужденной посадки не представлял опасности для третьих лиц за пределами зоны вынужденной посадки.

ОЦЕНКА УСТАЛОСТНОЙ ПРОЧНОСТИ

БАС-ВТ.570. Общие положения

- (а) Усталостная прочность зависит от длительности жизненного цикла, диапазона использования и методов обслуживания БАС-ВТ, для которой требуется сертификат.
- (b) Требования БАС-ВТ.571 применимы для металлических и неметаллических конструкций.

БАС-ВТ.571. Оценка усталостной прочности

- (а) Общие положения. Каждая часть несущей конструкции БВС-ВТ (несущая конструкция включает, но не ограничивается этим: винты, систему привода от двигателей до втулок винтов, системы управления, фюзеляж, шасси и основные элементы их крепления), разрушение которых могло бы иметь катастрофические последствия, должна быть определена и оценена согласно (b) и (c). Нижеследующие требования применяются при каждой оценке усталостной прочности:
 - (1) должна быть одобрена методика оценки,
- (2) должны быть определены места возможных разрушений,
- (3) при проведении летных измерений должны определяться:
- (i) нагрузки или напряжения при всех предельных режимах полета во всем диапазоне ограничений пункта БАС-ВТ.309, с учетом того, что перегрузки при маневрировании не должны превышать максимальных величин, ожидаемых при эксплуатации;
- (ii) влияние высоты на эти нагрузки или напряжения;

- (4) спектр нагружения должен быть таким же тяжелым, как и ожидаемый в эксплуатации, для нагрузок или напряжений, включая циклы нагружения «земля воздух земля». Спектры нагружения должны быть основаны на нагрузках или напряжениях, определенных согласно (а)(3).
- (b) Оценка допустимости усталости. Должно быть показано, что часть несущей конструкции при крайне малой вероятности катастрофического усталостного разрушения допускает усталостные изменения свойств материала без установления сроков проведения осмотров и других процедур в соответствии с (d).
- (с) Оценка сроков замены. Должно быть показано, что вероятность катастрофического усталостного разрушения крайне маловероятна в пределах сроков замены, установленных в соответствии с (d).
- (d) Сроки замены компонентов, изделий, устройств, элементов конструкции должны устанавливаться на основе методов и средств интегрированной логистической поддержки технической эксплуатации на протяжении всего жизненного цикла.

РАЗДЕЛ D – ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ

ОБЩИЕ ТРЕБОВАНИЯ

БАС-ВТ.601. Конструкция

- (а) Конструкция БВС-ВТ не должна иметь особенностей или деталей, которые по опыту известны как небезопасные или ненадежные.
- (b) Пригодность каждой вызывающей сомнение детали и части конструкции должна быть установлена в испытаниях.

БАС-ВТ.602. Критические части

- (а) Критическая часть это часть, отказ которой может иметь катастрофические последствия для БВС-ВТ, и для которой были определены критические характеристики, которые необходимо контролировать для обеспечения требуемого уровня надежности.
- (b) Если тип конструкции включает в себя критические части, должен быть установлен список критических частей. Должны быть установлены процедуры для определения наиболее критических характеристик конструкции, должны быть определены процессы, влияющие на эти характеристики, а также изменение конструкции и управление процессом изменений, необходимым, чтобы показать соответствие требованиям к обеспечению качества согласно Федеральным авиационным правилам, Часть 21.

БАС-ВТ.603. Материалы

Пригодность и долговечность конструкционных материалов, используемых для изготовления деталей, разрушение которых может неблагоприятно повлиять на безопасность, должны:

- (а) Быть установленными на основе опыта испытаний или данных от производителя;
- (b) Соответствовать утвержденным техническим условиям, которые должны обеспечить прочность и другие свойства, принятые в расчетных данных;
- (с) Оцениваться с учетом влияния внешних воздействий в ожидаемых условиях эксплуатации, таких, как температура и влажность.

БАС-ВТ.605. Технологические процессы

(а) Используемые технологические процессы должны обеспечивать стабильное качество конструкций. Если для достижения этой цели технологический процесс (такой, как склеивание, точечная сварка или термообработка) требующий тщательного контроля, то этот процесс должен быть аттестован соответствии c национальными

требованиями.

(b) Каждый технологический процесс в производстве, надёжность которого не подтверждена опытом его применения, должен быть обоснован результатами испытаний.

БАС-ВТ.607. Детали крепления

- (а) Каждый съемный болт, винт, гайка, штифт или другая съемная деталь крепления, потеря которых может угрожать безопасности эксплуатации БВС-ВТ, иметь отдельных контровочных лолжны два устройства. На детали крепления и эти контровочные устройства не должны неблагоприятно влиять окружающие условия, связанные особенностями их установки.
- (b) Самоконтрящаяся гайка не может использоваться в любых болтовых соединениях, подвергающихся при эксплуатации вращению, если в дополнение к самоконтрящемуся устройству не используется контровочное устройство нефрикционного типа.

БАС-ВТ.609. Защита конструкции

Каждая часть конструкции должна:

- (а) Быть соответствующим образом защищена от ухудшения свойств или потери прочности в эксплуатации по любой причине, включая:
 - (1) Атмосферные воздействия,
 - (2) Коррозию,
 - (3) Абразивный износ.
- (b) Иметь приспособления для вентиляции и дренирования там, где это необходимо для предотвращения скопления вызывающих коррозию, воспламеняющихся или вредных жидкостей.

БАС-ВТ.610. Защита от молнии и статического электричества

- (a) БВС-ВТ должно быть защищено от аварийных и катастрофических последствий воздействия молнии.
- (b) Для металлических элементов соответствие (a) может быть показано одним из следующих способов:
- (1) Электрическое соединение элементов с основной частью конструкции выполнено надлежащим образом; или
- (2) Эти элементы спроектированы таким образом, чтобы разряд молнии не был опасен для БВС-ВТ.
- (3) Металлические элементы конструкции БВС-ВТ, по которым возможно протекание тока молнии, должны быть соединены в общую массу непосредственным контактом или перемычками металлизации. При этом подвижные элементы конструкции, повреждение или функциональный отказ

33

которых в результате воздействия нормированного тока молнии может привести к аварийной или катастрофической ситуации, должны иметь, по крайней мере, одну перемычку металлизации или эквивалентное ей токопроводящее устройство. Поперечное сечение перемычек из меди должно быть не менее 6 мм², из алюминия – не менее 12 мм².

Сопротивление в местах соединений элементов конструкции должно быть не более 600 мкОм для неподвижных и не более 2000 мкОм для подвижных соелинений.

- (с) Для неметаллических элементов соответствие (а) может быть показано тем, что:
- (1) Конструкция этих элементов выполнена таким образом, что воздействие молнии должно сводиться к минимуму; или
- (2) Совокупность примененных средств отведения возникающего электрического тока не подвергает опасности БВС-ВТ.
- (d) Электрические соединения и защита от молнии и статического электричества должны быть такими, чтобы:
- (1) Свести к минимуму накопление электростатического заряда; и
- (2) Совокупность примененных средств отведения возникающего электрического тока не подвергает опасности БВС-ВТ.
- (e) Расчеты и стендовые испытания элементов БВС-ВТ на молниезащищенность следует проводить электрическими разрядами, содержащими:
- (1) импульсную составляющую с пиковым током не менее 200 кА, крутизной переднего фронта 10^{11} A/c и переносимым зарядом не менее 4 Кл;
- (2) постоянную составляющую с током не менее 200 А и переносимым зарядом не менее 200 Кл.
- (f) На БВС-ВТ в целом, его внешних элементах конструкции и оборудования должны быть предусмотрены соответствующие средства защиты (электростатические разрядники, токопроводящие покрытия и т.д.), обеспечивающие при электризации БВС-ВТ работу функциональных систем без возникновения особых ситуаций.

БАС-ВТ.611. Обеспечение обслуживания

Должны быть предусмотрены возможности для обеспечения тщательного обслуживания каждого элемента конструкции БВС-ВТ и его компонентов, для которых требуется:

- (а) Периодический осмотр;
- (b) Регулировка для правильной установки и функционирования;
 - (с) Смазка;
- (d) Сборка и разборка составных частей конструкции.

БАС-ВТ.613. Характеристики прочности материала и их расчетные значения

(а) Характеристики прочности материала должны быть основаны на достаточном количестве испытаний материала, удовлетворяющего требованиям

утвержденных технических условий, для установления расчетных значений на основе статистических данных.

- (b) Расчетные значения должны быть выбраны так, чтобы свести к минимуму вероятность разрушения конструкции из-за нестабильности свойств материала.
- (c) Влияние температуры на допустимые напряжения, применяемые при расчете ответственных элементов или узлов конструкции, должно учитываться при значительном нагреве элементов во время работы в нормальных эксплуатационных условиях.

БАС-ВТ.615. Свойства конструкции

- (a) Свойства конструкции БВС-ВТ должны соответствовать следующим условиям:
- (1) Там, где применяемые нагрузки в конечном счете распределяются через один элемент и его отказ может привести к потере структурной целостности используемых компонентов, должны иметь место гарантированные минимальные механические свойства конструкции (значения «А»).
- (2) Резервные структуры, в которых отказ отдельных элементов может привести к возникновению нагрузок, которые безопасно распределяются по другим несущим элементам, могут быть разработаны на основе 90% вероятности (значения «В»).
- (3) Значения «А» и «В» определяются следующим образом:
- (i) Значение «А» обеспечена прочность материала с вероятностью 99% при доверительном интервале 95 %.
- (ii) Значение «В» обеспечена прочность материала с вероятностью 90% при доверительном интервале 95%
- (b) Могут быть использованы расчетные значения для материалов, при этом образец каждого отдельного материала (полуфабриката) проходит испытания до его применения, и эти испытания показывают, что фактические характеристики прочности этого конкретного материала (полуфабриката) равны или превышают прочность, принятую в расчетах при проектировании.

БАС-ВТ.619. Дополнительные коэффициенты безопасности

- (а) Коэффициент безопасности, предписанный в БАС-ВТ.303, должен быть умножен на соответствующие максимальные специальные коэффициенты безопасности, предписанные в БАС-ВТ.621 БАС-ВТ.625, для каждой детали конструкции, прочность которой:
 - (1) Является неопределенной;
- (2) Может ухудшиться в эксплуатации до плановой замены; или
- (3) Может значительно изменяться вследствие несовершенства технологических процессов или методов контроля для конструкций из композиционных материалов; при этом должен быть использован специальный, полученный по результатам испытаний, коэффициент, который учитывает в расчете нестабильность характеристик материала, а также влияние температуры и влагопоглощения.

34 Нормы лётной годности НЛГ БАС-ВТ

БАС-ВТ.621. Дополнительные коэффициенты безопасности для отливок деталей. изготовленных методами аддитивных технологий

Для отливок и деталей, изготовленных методами аддитивных технологий, прочность обоснована, по крайней мере, одним статическим испытанием и которые контролируются визуально, должен быть использован специальный коэффициент 2,0. Этот коэффициент может быть уменьшен до 1,25 при условии, что такое снижение подтверждено испытаниями не менее трех образцов и все производимые отливки или детали подвергаются одобренному визуальному и рентгенографическому контролю или одобренному эквивалентному методу неразрушающего контроля.

БАС-ВТ.623. Дополнительные коэффициенты безопасности на смятие

- (а) Каждый элемент конструкции, который имеет зазор (свободную посадку) и подвергается ударам или вибрациям, должен иметь достаточно большой дополнительный коэффициент безопасности на смятие для предотвращения их влияния на нормальное относительное перемещение, за исключением случаев, указанных в (b).
- (b) Может не использоваться дополнительный коэффициент безопасности на смятие для элемента конструкции, для которого предусмотрен любой больший дополнительный коэффициент безопасности.

БАС-ВТ.625. Дополнительные коэффициенты безопасности для соединений

Для каждого соединения (детали или зажима, используемого для соединения одного элемента конструкции с другим) применимы следующие требования:

- (а) Для каждого соединения, прочность которого не подтверждена испытаниями при эксплуатационных и расчетных нагрузках, воспроизводящими реальные условия нагружения в данном соединении и окружающих его элементах конструкции, должен применяться дополнительный коэффициент безопасности для соединений, равный как минимум 1,15 для каждого элемента:
 - (1) Соединения;
 - (2) Средств крепления;
 - (3) Опоры соединенных элементов.
- (b) Коэффициент безопасности для стыковых узлов требуется применять соединений, для спроектированных на основе данных всесторонних испытаний (например, сплошные регулярные соединения металлической обшивки. сварные соединения и соединения деревянных частей «в замок»).
- (с) Для каждого соединения рассматриваемая его часть должна считаться соединением до точки, в характеристики сечения становятся типичными для данного элемента конструкции.

(d) Для каждого стыкового узла, выполненного заодно с деталью, стыковым узлом считается часть всего узла до того места, где его сечение становится типичным для данного элемента конструкции.

БАС-ВТ.629. Флаттер и дивергенция

Каждая аэродинамическая поверхность БВС-ВТ не должна быть подвержена воздействию флаттера и дивергенции на любых скоростях полета и режимах работы силовой установки.

винты

БАС-ВТ.653. Выравнивание давления И дренирование лопастей винта

- (а) Для каждой лопасти винта:
- (1) Должны быть средства для выравнивания внешнего и внутреннего давления.
 - (2) Должны быть дренажные отверстия; и
- (3) Лопасть должна быть спроектирована так, чтобы предотвратить скопление в ней воды.
- (b) Подпункты (a)(1) и (2) не применимы к герметичным лопастям винта, способным выдержать максимальные перепады давления, ожидаемые в эксплуатации.

БАС-ВТ.659. Балансировка по массе

- (а) Винты и лопасти должны быть сбалансированы по массе, что необходимо для:
 - (1) предотвращения чрезмерных вибраций; и
- (2) предотвращения флаттера на любой скорости, вплоть до максимальной поступательной скорости.
- (b) должна быть подтверждена прочность крепления балансировочных грузов.

БАС-ВТ.661. Зазор между лопастями винта и частями конструкции

Должен быть достаточный зазор между лопастями винта и другими частями конструкции для предотвращения удара лопастей о любую часть конструкции любых ожидаемых В эксплуатации.

БАС-ВТ.663. Средства предотвращения земного резонанса

- (а) Надежность средств предотвращения земного резонанса должна быть показана либо расчетами и испытаниями, либо положительным эксплуатации.
- (b) Допустимый эксплуатации диапазон изменений демпфирующего лействия средств предотвращения земного резонанса должен быть установлен и исследован в процессе испытаний, требуемых в пункте БАС-ВТ.241 при этом должно быть показано расчетами или испытаниями,

неисправность или отказ одного из этих средств не вызовет земного резонанса.

СИСТЕМЫ УПРАВЛЕНИЯ

БАС-ВТ.671. Общие положения

Возможность неправильной сборки и соединения любых элементов системы управления полетом должна быть сведена к минимальной потому, что может привести к неправильному функционированию системы, в соответствии с особенностями конструкции, а также наличием отличительной и постоянной маркировки.

БАС-ВТ.673. Основные органы управления полетом

Основными органами управления полетом являются органы, используемые внешним пилотом для управления БВС-ВТ по тангажу, крену, курсу и вертикальному движению. К ним относится оборудование БВС-ВТ, соответствующее пункту БАС-ВТ.1329 и оборудование СВП, соответствующее БАС-ВТ.1731 – БАС-ВТ.1741.

БАС-ВТ.674. Взаимосвязанные системы управления

Каждая основная система управления полетом должна обеспечивать безопасный полет и посадку и работать независимо после возникновения неисправности, отказа или заедания любой из вспомогательных систем управления.

БАС-ВТ.675. Упоры

- (а) Каждая система управления должна иметь упоры, которые надежно ограничивают диапазон отклонения подвижных аэродинамических поверхностей органов управления, управляемых данными системами.
- (b) Каждый упор должен быть расположен в системе так, чтобы на диапазон перемещения соответствующего органа управления не оказывало значительного влияния одно из следующих:
 - (1) Износ.
 - (2) Ослабление крепления; или
 - (3) Нарушение фиксации регулировок.
- (с) Каждый упор должен выдерживать нагрузки, соответствующие расчетным условиям для системы.
 - (d) Для каждой лопасти несущего винта:
- (1) Должны быть предусмотрены упоры, соответствующие конструкции лопасти, для ограничения ее перемещений в шарнирах;
- (2) Должны быть средства для удержания лопасти от удара об ограничители свеса на любых режимах работы, за исключением раскрутки и останова винта.
- (е) Крайние положения органов управления должны ограничиваться упорами, выдерживающими расчетные

нагрузки.

(f) Для деталей подвижных соединений и механизмов систем управления БВС-ВТ, отказ которых в результате износа может привести к катастрофической ситуации, должны быть определены предельные величины износа и предусмотрены методы и средства контроля величины износа при ремонте.

БАС-ВТ.679. Стопорные устройства системы управления

Если предусмотрено устройство для стопорения системы управления при нахождении БВС-ВТ на земле, то должны быть средства для:

- (а) Однозначного предупреждения внешнему пилоту перед взлетом о том, что стопорное устройство включено;
- (b) Предотвращения включения стопорного устройства в полете.

БАС-ВТ.681. Статические испытания при расчетных нагрузках

- (а) Соответствие требованиям данных Норм летной годности к прочности БВС-ВТ при расчетных нагрузках должно быть показано в испытаниях, в которых:
- (1) Направление приложения нагрузок при испытаниях создает наибольшее нагружение в системе управления;
- (2) Включается каждое соединение, ролик и кронштейн, используемые для крепления системы к основной конструкции.
- (b) Должно быть показано (расчетом или испытаниями c изолированным нагружением элементов) соответствие требованиям дополнительным коэффициентам безопасности соединениях системы управления, подвергающихся угловому перемещению.

БАС-ВТ.683. Испытания на функционирование

Если на БВС-ВТ имеется механическая часть системы управления, то испытаниями на функционирование должно быть показано, что при приведении в действие механической части системы управления и воздействии на систему управления нагрузок, соответствующих установленным, вплоть до эксплуатационных, для данной системы, в системе отсутствуют:

- (а) Заедание.
- (b) Чрезмерное трение;
- (с) Чрезмерная деформация;
- (d) Недопустимые люфты.

БАС-ВТ.685. Детали системы управления

(а) Каждая деталь каждой системы управления должна быть спроектирована таким образом, чтобы предотвратить заклинивание, истирание, а также воздействие груза, целевой нагрузки, незакрепленных

предметов или замерзания влаги.

- (b) Должны иметься средства предотвращения попадания посторонних предметов туда, где они могут вызвать заедание системы управления.
- (c) Должны быть приняты меры для предотвращения касания тросов или тяг о другие части конструкции.
- (d) Тросовые системы должны быть спроектированы с учетом следующих требований:
- (1) Тросы, соединения тросов, тандеры, заделка тросов и ролики должны быть выбраны в соответствии с применимыми стандартами, их надёжность должна быть проверена в лётных испытаниях.
- (2) Конструкция тросовых систем должна предотвращать любые опасные изменения в натяжении троса во всем диапазоне перемещений при любых ожидаемых условиях эксплуатации и изменениях температуры.
- (3) Типы и размеры роликов должны соответствовать тросам, с которыми они используются. Должны использоваться сочетания роликов и тросов и характеристики прочности, оговоренные в применимых стандартах.
- (4) Ролики должны иметь ограничительные предохранительные устройства, предотвращающие смещение или соскальзывание тросов.
- (5) Ролики должны располагаться достаточно близко к плоскости перемещения троса так, чтобы предотвращалось истирание троса о реборды ролика.
- (6) Трубчатая направляющая не должна вызывать изменение направления выхода троса более чем на 3° .
- (7) В системе управления не должен использоваться штифт, имеющий головку и отверстие под шплинт на конце, если он подвергается воздействию нагрузок или перемещений и удерживается только шплинтом.
- (8) Тандеры, присоединенные к деталям, которые имеют угловое перемещение, должны быть установлены так, чтобы предотвращалось заедание во всем диапазоне перемещений.
- (9) Должны предусматриваться возможности для визуального осмотра каждой трубчатой направляющей, ролика, заделки троса и тандера.
- (е) Для соединений систем управления, имеющих угловое перемещение, должны использоваться следующие дополнительные коэффициенты безопасности применительно к расчетной прочности на смятие наиболее мягкого материала, используемого в соелинении:
- (1) 3,33 для систем с жесткой проводкой без шариковых и роликовых подшипников;
 - (2) 2,0 для тросовых систем.
- (f) Для соединений системы управления с шариковыми и роликовыми подшипниками не могут превышаться нагрузки по условиям статической прочности и бринеллированию подшипников, указанные изготовителем.

БАС-ВТ.691. Механизм перевода на авторотацию

Каждый механизм управления шагом лопастей несущего винта должен обеспечивать экстренный

переход на режим авторотации после отказа силовой установки, если такой режим полёта возможен для данной конструкции БВС-ВТ.

БАС-ВТ.695. Системы управления с силовыми приводами

- (а) Если используется система управления с силовыми приводами и/или бустерами, то должна быть предусмотрена немедленно вводимая в действие запасная система, позволяющая безопасно продолжать полёт и совершать посадку в случае:
- (1) любого единичного отказа в энергетической части системы управления; или
 - (2) отказа всех двигателей.
- (b) Каждая запасная система может быть дублирующей энергетической частью системы управления или механической системой с ручным управлением. Энергетическая часть системы управления включает в себя источники энергии (например, гидравлические насосы) и такие элементы, как клапаны, трубопроводы и приводы.
- (с) Разрушение механических элементов (таких как штоки поршня и соединения), и заклинивание силовых цилиндров должны учитываться, если они не являются практически невероятными.

ШАССИ

БАС-ВТ.723. Испытания на сброс для определения работоемкости шасси

Инерционная перегрузка при посадке и располагаемая энергоемкость шасси БВС-ВТ должны быть подтверждены испытаниями, указанными в пунктах БАС-ВТ.725 и БАС-ВТ.727 соответственно. Эти испытания должны быть проведены на БВС-ВТ в сборе или для отдельных опор на агрегатах, собранных соответствующим образом.

БАС-ВТ.725. Испытания на сброс при эксплуатационной нагрузке

Для БВС-ВТ должны быть выполнены испытания на эксплуатационную нагрузку. Данные испытания должны быть выполнены следующим образом:

- (а) Высота сброса должна быть равна:
- (1) 320 мм от самой нижней точки шасси до земли;
- (2) любому меньшему значению не ниже 200 мм (8 дюймов), дающему скорость при касании, равную наибольшей вертикальной скорости, возможной при касании земли при выполнении нормальных посадок с неработающими двигателями.
- (b) Если учитывается подъемная сила винта, установленная в БАС-ВТ.473(a), то при проведении испытаний на сброс она должна быть воспроизведена с помощью соответствующих энергопоглощающих устройств или путем использования эффективной массы.
 - (с) Каждая опора шасси должна быть испытана в

положении, воспроизводящем условия посадки, которые наиболее неблагоприятны в отношении поглощаемой энергии.

(d) При использовании понятия эффективной массы для установления соответствия (b) вместо сложных вычислений можно применять следующие формулы:

$$W_e = W\left(\frac{h + (1 - L)d}{h + d}\right);$$

$$n = n_j \frac{W_e}{W} + L$$

гле:

 W_e — эффективный вес, используемый в испытаниях, H (кгс, фунты);

 $W = W_M$ – статическая реакция на отдельную основную опору шасси при наиболее критическом положении БВС-ВТ, H (кгс, фунты).

h – указанная в (а) высота сброса, м (мм, дюймы);

L – отношение принятой в расчете подъемной силы винта к весу БВС-ВТ;

d — деформация шины при ударе (при соответствующем внутреннем давлении) плюс вертикальная составляющая перемещения оси колеса относительного центра сбрасываемой массы, м (мм, дюймы);

n – эксплуатационная инерционная перегрузка;

 n_j — перегрузка, возникающая при ударе, действующая на используемую в испытаниях массу (т.е. ускорение dv/dt в единицах ускорения силы тяжести, зарегистрированное в испытаниях, плюс 1,0).

(е) Эксплуатационная нагрузка, указанная в документации на каждую опору шасси, должна равняться или превышать эксплуатационную нагрузку на земле, определенную в соответствии с требованиями данных Норм.

БАС-ВТ.727. Испытания на сброс для определения располагаемой работоемкости шасси

Для БВС-ВТ должны быть выполнены испытания на сброс по определению располагаемой работоемкости шасси. Данные испытания должны проводиться следующим образом:

- (а) Высота сброса должна в 1,5 раза превышать указанную в БАС-ВТ.725(а).
- (b) Подъемная сила винта, если она учитывается таким же образом, как и

БАС-ВТ.725(b), не должна превышать в 1,5 раза подъемную силу, указанную в упомянутом пункте.

(c) Шасси должно выдерживать эти испытания без разрушения. Разрушением шасси считается, когда опора шасси не удерживает БВС-ВТ в надлежащем положении или допускает удар о землю частью, не являющейся посадочным устройством БВС-ВТ, или внешними приспособлениями.

РАЗМЕЩЕНИЕ ЦЕЛЕВОЙ НАГРУЗКИ

БАС-ВТ.787. Отсеки целевой нагрузки

- (а) Каждый отсек целевой нагрузки должен быть спроектирован так, чтобы выдерживать максимальную указанную в его трафарете массу содержимого и критическое распределение нагрузки при соответствующих максимальных перегрузках, относящихся к установленным условиям нагружения в полете и на земле, за исключением условий аварийной посадки, указанных в пункте БАС-ВТ.561.
 - (b) [Зарезервирован].

ПОЖАРНАЯ ЗАШИТА

БАС-ВТ.853. Внутренняя отделка отсеков целевой нагрузки и бортового оборудования

- В отсеках БВС-ВТ, за исключением БВС-ВТ, предназначенных для полётов на высоте до 10 метров в пределах прямой видимости:
- (а) Оборудование отсеков, включая целевую нагрузку и бортовое оборудование, должно быть изолировано от источников нагрева (включая двигатель и выхлопную трубу).
- (b) Стенки отсека, находящиеся рядом с источниками нагрева, должны быть изготовлены из огнестойких материалов или облицованы огнестойкими материалами.
- (с) В отсеке не должны находиться какие-либо органы управления, электропроводка, трубопроводы, оборудование и комплектующие изделия, повреждение или отказ которых могут повлиять на безопасность эксплуатации, если только они не защищены так, что:
- (1) они не могут быть повреждены при перемещении груза в отсеке;
- (2) их повреждение или отказ не вызовут опасность возникновения пожара.

БАС-ВТ.859. Системы обогрева

- (а) Каждая система обогрева, требующаяся для управления полётом и других критических систем, должна поддерживать температуры этих критических систем в границах, установленных для этих систем в критических рабочих условиях.
- (b) Каждая система обогрева, требующаяся для управления полётом и других критических систем, не должна иметь таких отказов, которые могут влиять на функционирование этих критических систем.

БАС-ВТ.861. Пожарная защита органов управления полётом и конструкции

Каждая часть конструкции, деталей управления, механизмы несущего винта и другие части БВС-ВТ, необходимые для выполнения управляемой посадки, на которые может повлиять пожар в силовой установке, должны быть огненепроницаемыми или защищенными

так, чтобы они могли выполнять свои основные функции как минимум в течение 5 мин при любых предполагаемых условиях пожара силовой установки.

Для БВС-ВТ с электрической силовой установкой, отсеки аккумулятором должны рассматриваться, применительно к требованиям данного пункта, как отсеки силовой установки.

БАС-ВТ.863. Пожарная защита зон с воспламеняющимися жидкостями

В каждой зоне, где могут появиться воспламеняющиеся жидкости или пары вследствие утечки из жидкостной системы, должны быть предусмотрены дренажи и вентиляционные отверстия.

внешний груз

БАС-ВТ.865. Средства крепления внешнего груза

(а) Должно быть показано расчетом, испытаниями или обоими способами, что средства крепления внешнего груза к БВС-ВТ для комбинаций «БВС-ВТ груз», предназначенных для перевозки грузов на внешней подвеске, могут выдержать эксплуатационную статическую нагрузку, вызванную максимальной массой внешнего груза, на который запрашивается сертификат, умноженному на перегрузку 2,5 или меньшую перегрузку, принятую в соответствии с пунктами БАС-ВТ.337 – БАС-ВТ.341.

Нагрузка в любой комбинации «БВС-ВТ - груз» при любом типе груза прикладывается параллельно вертикальной оси БВС-ВТ. Для комбинации «БВС-ВТ - груз», когда внешний груз может быть сброшен, нагрузка должна также прикладываться и в любом другом направлении, составляющем с вертикальной осью максимальный угол, который может быть достигнут в эксплуатации, но не менее 30°. Однако угол в 30° может быть уменьшен, если:

- (1) Установлено эксплуатационное ограничение, регламентирующее операции с внешним грузом так, чтобы углы отклонения груза от вертикали не превышали значений углов, для которых показано соответствие требованиям этого пункта; или
- (2) Показано, что меньшее значение угла не будет превышено в эксплуатации.
- (b) Средства крепления внешнего груза комбинаций «БВС-ВТ - груз», когда внешний груз может быть сброшен, должны иметь быстродействующее устройство, позволяющее летному экипажу экстренно сбросить груз в полете. Это быстродействующее устройство должно включать основную быстродействующую подсистему резервную быстродействующую подсистему для сброса груза, которые независимы одна от другой. Эго быстродействующее устройство и средства управления им должны соответствовать следующим требованиям:
 - (1) Орган управления основной быстродействующей

- подсистемой для сброса груза должен быть установлен на одном из основных органов управления БВС-ВТ или иметь другое легкодоступное расположение и должен быть спроектирован и расположен так, чтобы он мог быть приведен в действие пилотом или другим членом внешнего экипажа без опасного ограничения возможностей управления БВС-ВТ в аварийной ситуации.
- (2) Кроме того, должна быть предусмотрена возможность управления резервной быстродействующей подсистемой, легкодоступной для пилота или другого члена летного экипажа.
- (3) Как основная, так и резервная быстродействующие подсистемы для сброса груза должны:
- (i) быть надежными и правильно функционировать при всех величинах веса внешнего груза, включая максимальный вес, на который запрашивается сертификат;
- (іі) быть защищены от воздействия электромагнитного излучения, как от внутренних, так и внешних источников, а также от воздействия молнии, чтобы предотвратить несанкционированный сброс груза должна быть обеспечена защита электромагнитных полей высокой интенсивности (ЭМПВИ) с величиной напряженности электрической составляющей электромагнитного поля не менее 20 B/M.
- (iii) быть защищены от воздействия любого отказа, который может быть вызван отказом любой другой электрической или механической системы БВС-ВТ.
- (c) На основании расчетов, наземных и летных испытаний должно быть показано, что транспортировка и сброс груза в критической конфигурации в нормальных условиях полета не создают опасность для БВС-ВТ в одобренной области эксплуатационных режимов. Дополнительно для БАС-ВТ должно быть продемонстрировано, что сброс груза в аварийных условиях полета не создает опасность для БВС-ВТ
- (d) Около средств крепления внешнего груза должен быть размещен трафарет или маркировочная надпись с указанием максимального разрешенной массы внешнего груза, соответствующего требованиям пункта БАС-ВТ.25 и настоящего пункта.
- (е) Оценка усталостной прочности средств крепления внешнего груза, согласно требованиям пункта БАС-ВТ.571, не применима для комбинаций «БВС-ВТ-груз», за исключением случаев, когда отказ критического элемента конструкции средств крепления создает опасность для БВС-ВТ.

PA3HOE

БАС-ВТ.871. Реперные точки

Должны быть предусмотрены реперные точки для нивелировки БВС-ВТ на земле.

НЛГ БАС-ВТ

БАС-ВТ.873. Средства крепления балласта

Средства крепления балласта должны быть спроектированы и установлены так, чтобы предотвращался самопроизвольный сдвиг балласта в полете.

Разлел Е – СИЛОВАЯ УСТАНОВКА

ОБЩИЕ ПОЛОЖЕНИЯ

БАС-ВТ.901. Силовая установка

- (а) Силовая установка БВС-ВТ, рассматриваемая в данном разделе, включает каждый компонент (кроме конструкции несущего и вспомогательного винтов), который:
- (1) необходим для создания мощности, потребной для движения,
- (2) осуществляет управление основными двигательными установками, или
- (3) обеспечивает безопасность двигательной установки в периоды между обычными осмотрами и ремонтами.
- (b) Для силовой установки, являющейся частью БВС-ВТ, её компоненты должны быть сконструированы, расположены и смонтированы так, чтобы обеспечивалась их непрерывная безопасная эксплуатация в периоды между обычными осмотрами или ремонтами, для диапазонов температур и высот, для которых запрашивается одобрение.
 - (с) Для каждой силовой установки:
- (1) Должен быть обеспечен доступ для проведения любого осмотра и технического обслуживания, которые необходимы для сохранения летной годности в процессе эксплуатации,
- (2) Между основными элементами силовой установки и остальной частью БВС-ВТ должны быть выполнены электрические соединения для выравнивания потенциалов,
- (3) Должны быть предусмотрены конструктивные меры для минимизации возможности неправильной сборки компонентов и оборудования, существенно важного для безопасной эксплуатации БВС-ВТ, за исключением случаев, когда может быть показано, что эксплуатация с неправильной сборкой является событием практически невероятным.
- (d) Система запуска электрического маршевого двигателя должна быть защищена от непредумышленного запуска.

БАС-ВТ.903. Двигатели

Двигатели, используемые на БВС-ВТ, должны быть сертифицированы в соответствии

с Нормами летной годности Часть 33 или быть одобрены в составе БВС-ВТ в соответствии с предполагаемым применением.

БАС-ВТ.907. Вибрации двигателя

- (а) Двигатель должен быть установлен таким образом, чтобы были исключены вибрации любой части двигателя и БВС-ВТ, препятствующие нормальной эксплуатации, с учётом ожидаемых условий эксплуатации.
- (b) Подсоединение винтов и систем приводов винта к двигателю не должно вызывать вибрационных напряжений, превышающих установленные пределы, в главных вращающихся частях двигателя.
- (c) Ни одна часть системы привода не должна подвергаться вибрационным напряжениям, превышающим установленные пределы.

БАС-ВТ.908. Вентиляторы охлаждения

- (а) Если установлен вентилятор охлаждения двигателя или системы привода винтов, то должны быть предусмотрены средства защиты БВС-ВТ и обеспечения безопасной посадки в случае разрушения лопатки вентилятора и должно быть продемонстрировано, что:
- (1) в случае разрушения лопатки вентилятора обломки будут локализованы,
- (2) каждый вентилятор размещен таким образом, что поломка его лопатки не ухудшит безопасности, или
- (3) каждая лопатка вентилятора может выдерживать разрушающую нагрузку величиной 1,5 центробежной силы, ожидаемой в эксплуатации, ограниченной:
- (i) для вентиляторов, приводимых в действие непосредственно от двигателя:
- (A) максимальными частотами вращения, достижимыми при неуправляемых условиях работы; или
- (В) частотами вращения при работе средств ограничения частоты вращения ротора двигателя.
- (ii) для вентиляторов, приводимых в действие от системы привода винтов, максимальной частотой вращения системы привода винтов, ожидаемой в эксплуатации, включая переходные режимы.
- (b) Если не проводится оценка усталостной прочности по пункту БАС-ВТ.571, то должно

НЛГ БАС-ВТ

быть продемонстрировано, что на лопатках вентилятора охлаждения не возникают резонансные явления при работе в пределах допустимых условий эксплуатации БВС-ВТ.

СИСТЕМА ПРИВОДА ВИНТА

БАС-ВТ.917. Конструкция

- (а) Каждая система привода винта должна иметь устройство для каждого двигателя для автоматического рассоединения с несущим и вспомогательным винтами в случае отказа двигателя.
- (b) Каждая система привода винта должна быть скомпонована таким образом, чтобы винт, необходимый для управления на режиме авторотации, продолжал приводиться в движение несущим винтом после отсоединения несущего и вспомогательных винтов от двигателя.
- (с) Если в системе привода винта используется устройство по ограничению крутящего момента, то оно должно размещаться так, чтобы это обеспечивало непрерывное управление БВС-ВТ во время работы данного устройства.
- (d) Система привода винта включает в себя все элементы, необходимые для передачи мощности от двигателей к втулкам винтов. К ним относятся редукторы, валы, универсальные шарниры, соединения, тормозные устройства винта, муфты, опоры трансмиссии, любые сопутствующие вспомогательные узлы или приводы, любые вентиляторы, являющиеся частью системы привода винта, примыкающие к ней или крепящиеся на ней.

БАС-ВТ.921. Тормоз винта

Если имеются средства для торможения винта, то управление этой системой должно быть независимо от двигателя, должны быть указаны все ограничения по использованию этих средств и орган управления тормозом должен быть защищен от случайного использования.

БАС-ВТ.923. Испытание системы привода винта и механизмов управления

(а) Для БВС-ВТ необходимо проведение испытаний системы привода винта и механизмов управления, предписанных данным пунктом. Каждый элемент, прошедший испытания, оговоренные в данном пункте, в

- конце испытаний должен быть в состоянии, пригодном к эксплуатации. Во время испытаний не допускается проведение разборки, способной повлиять на результаты испытаний.
- (b) Каждая система привода винта и каждый механизм управления должны быть испытаны, по меньшей мере, в течение 50 ч или определённого времени до первого ремонта системы привода двигателя. винта механизма управления, в зависимости от того, какое время будет меньше. Испытания должны проводиться на БВС-ВТ, и крутящий момент должен восприниматься винтами, которые устанавливаются на БВС-ВТ, за исключением случаев, когда могут быть использованы другие средства наземных и летных испытаний при других соответствующих методах поглощения крутящего момента, если условия крепления и вибрационные характеристики имитируют условия испытаний на БВС-ВТ.
- (с) 60% испытаний, оговоренных в (b), выполняться при должны максимальной величине крутящего момента и максимальной частоте вращения для эксплуатации при максимальном продолжительном моменте. При ЭТИХ испытаниях управления несущим винтом должны быть установлены в таком положении, которое бы максимальное продольное перемещение ручки управления внешнего пилота циклическим шагом для имитации поступательного полета. Органы управления рулевым винтом должны находиться при испытаниях проводимых В положении, соответствующем обычной эксплуатации.
- (d) 30% испытаний или часть испытаний длительностью в 25 ч, предназначенная для БВС-ВТ, для которого требуется 30-минутная или продолжительная мощность при одном неработающем двигателе, как оговорено в БАС-BT.923(b), должны проводиться моменте менее 75% крутящем не OT продолжительного, максимального И при минимальной эксплуатационной частоте вращения с крутящим моментом величиной в 75% от максимального продолжительного. Органы управления рулевым винтом должны находиться при проводимых испытаниях в соответствующем положении, эксплуатации.
- (е) 10% испытаний, как оговорено в (b), должны проводиться при величине крутящего момента, не меньшей, чем взлетный крутящий момент и максимальной частоте вращения на этом режиме. Органы управления несущими и

рулевыми винтами должны находиться в положении, соответствующем режиму вертикального набора высоты.

- (f) Части испытаний, оговоренные в (c) и (d), должны проводиться с интервалами не менее чем 30 мин и могут выполняться либо на земле, либо в полете. Часть испытаний, оговоренная в (e), должна проводиться с интервалами не менее чем 5 мин.
- (g) При интервалах не более чем 2 ч во время испытаний, оговоренных в (c), (d) и (e), двигатель должен быть быстро остановлен, чтобы дать возможность двигателю и приводу винта автоматически разъединиться.
- (h) При условиях, оговоренных в (c), должно выполнено 250 полных быть поперечного управления, 250 полных циклов продольного управления несущим винтом и управления 250 полных циклов вспомогательным винтом. Под «полным подразумевается циклом» перемещение органов управления OT нейтрального положения в оба крайних положения и обратно в нейтральное положение при условии, что перемещения органов управления не создают нагрузки и маховые движения, превышающие максимальные нагрузки и маховые движения, имеющие место в полете. Указанные циклы могут выполняться во время испытаний, оговоренных в (с).
- (i*) По меньшей мере 100 включений муфты сцепления должны быть выполнены:
- (1) так, чтобы вал на приводимой в движение стороне муфты сцепления ускорялся;
- (2) с использованием частоты вращения и метода по выбору заявителя.

БАС-ВТ.927. Дополнительные испытания

- (а) Для определения минимума безопасности привода винта должны быть выполнены необходимые динамические, длительные, эксплуатационные и вибрационные исследования.
- (b) Если запрашивается сертификация режима авторотации, испытаниями должно быть продемонстрировано, что система привода винта может работать в течение 15 мин в условиях авторотации после падения давления масла в основной маслосистеме привода винта.

БАС-ВТ.931. Критическая частота вращения валов трансмиссии

(а) Критические частоты вращения валов какой-либо системы трансмиссии должны

- определяться посредством испытаний, однако в тех случаях, когда для какого-либо конкретного случая имеются приемлемые методы анализа, могут быть использованы аналитические методы.
- (b) Если какая-либо критическая частота вращения находится в пределах рабочих диапазонов или близка к ним при работе двигателя на режиме малого газа, на режиме авторотации (если на таковой запрошен сертификат), то напряжения, возникающие при такой частоте, должны находиться безопасных пределах. Это должно быть продемонстрировано испытаниями.
- (с) Если используются аналитические методы, и они показывают, что критическая частота не находится в пределах разрешенного рабочего диапазона, вычисленные критические частоты вращения должны находиться вне рабочего диапазона достаточным запасом, чтобы учесть возможные изменения между вычисленными фактическими величинами.

БАС-ВТ.935. Соединения валов трансмиссии

Каждый универсальный шарнир, скользящие и другие соединения валов трансмиссии, для работы которых необходима смазка, должны быть ею обеспечены.

ТОПЛИВНАЯ СИСТЕМА

БАС-ВТ.951. Общие положения

- (а) Топливная система должна быть сконструирована и выполнена таким образом, чтобы обеспечивать подачу топлива с расходом и давлением, установленными для обеспечения нормальной работы двигателя во всех ожидаемых условиях эксплуатации и должна быть выполнена так, чтобы предотвращать попадание воздуха в систему.
- (b) Топливная система должна быть устроена таким образом, чтобы топливный насос не мог качать топливо более чем из одного бака одновременно. В системах подачи топлива самотеком недопустим отбор топлива для питания двигателя более чем из одного бака одновременно, если воздушные пространства баков не соединены так, чтобы гарантировать одинаковые условия отбора топлива из всех соединенных баков.

БАС-ВТ.954. Молниезащита топливной

системы

Топливная система должна быть сконструирована и размещена таким образом, чтобы предотвращалось воспламенение паров топлива внутри системы в результате:

- (а) Прямых ударов молнии в зоны, имеющие высокую вероятность попадания прямого удара.
- (b) Скользящих разрядов молнии в зоны, где такие разряды весьма вероятны; и
- (c) Коронного разряда и протекания тока молнии у выходных отверстий дренажа топливной системы.

БАС-ВТ.955. Полача топлива

- (а) Общие положения. Способность топливной системы БВС-ВТ подавать топливо с расходом, указанным в настоящем пункте, и с давлением, необходимым для нормальной работы двигателя, должна быть показана для положения БВС-ВТ, которое является наиболее критическим с точки зрения подачи топлива и количества невырабатываемого остатка. Эти условия разрешается воспроизводить на соответствующем стенде. Кроме того:
- (1) Количество топлива в баке не должно превышать суммы, состоящей из величины невырабатываемого остатка топлива из этого бака, установленной согласно БАС-ВТ.959, плюс количество топлива, необходимое для подтверждения соответствия настоящему пункту.
- (2) Если установлен расходомер топлива, то он должен быть блокирован при проведении испытаний, а топливо должно проходить через измеритель или его перепускной канал.
- (3) Топливный фильтр, требуемый в соответствии с пунктом БАС-ВТ.997, должен быть заблокирован до такой степени, которая необходима для имитации накопления загрязнений топлива, вызывающих срабатывание сигнализатора.
- (b) Системы подачи топлива самотеком. Величина расхода в системах подачи топлива в двигатель самотеком (основной и резервной) должна составлять 150% от расхода, соответствующего взлетному режиму работы двигателя, а при его отсутствии, эксплуатационному режиму с наибольшим потреблением топлива.
- (с) Насосные системы. Расход топлива в каждой насосной системе подачи топлива (основной и резервной) должен составлять 125% от расхода, соответствующего взлетному режиму работы двигателя при максимальной

мощности, установленной для взлета. Этот расход топлива требуется для каждого основного насоса с приводом от двигателя и для каждого аварийного насоса, и он должен обеспечиваться в случаях, когда насос работает так, как он работал бы на взлете.

(d) Топливные системы с несколькими баками. Если поршневой двигатель может питаться более чем из одного топливного бака происходит снижение если мошности причине двигателя опорожнения по выбранного топливного бака, то должна быть предусмотрена возможность восстановления этим двигателем полной мощности и давления топлива за время не более 10 с после переключения на любой полный бак, когда появление перебоев в работе двигателя из-за выработки топлива в баке, из которого происходит питание двигателя, становится очевидным.

БАС-ВТ.959. Невырабатываемый остаток топлива в баках

Для каждого топливного бака должен быть установлен невырабатываемый остаток топлива не менее того количества, при котором наблюдается признак нарушения первый работы двигателя при наиболее неблагоприятных условиях подачи топлива на предполагаемых эксплуатационных режимах и маневрах БВС-ВТ, при которых производится забор топлива из данного бака.

БАС-ВТ.961. Эксплуатация топливной системы при высокой температуре

Для БВС-ВТ, предназначенных для полётов при температурах наружного воздуха более 30°С, должно быть показано испытаниями, что каждая топливная система с всасыванием и другие топливные системы, в которых могут образовываться пары, успешно функционируют (в пределах сертификационных ограничений) при использовании топлива с температурой 43°С.

БАС-ВТ.963. Топливные баки. Общие положения

- (а) Каждый топливный бак должен выдерживать без повреждений вибрации и инерционные нагрузки, нагрузки от веса топлива и элементов конструкции, которые могут воздействовать на бак при эксплуатации.
- (b) Каждый топливный бак емкостью 38 л и более должен иметь внутренние перегородки

или внешние поддерживающие устройства, противодействующие плесканию топлива.

- (c) Каждый топливный бак на борту БВС-ВТ должен отделяться от отсека двигателя пожарной перегородкой. Между баком и перегородкой должен быть воздушный зазор шириной не менее 13 мм.
- (d) Полости, примыкающие к поверхности топливных баков, должны вентилироваться так, чтобы в полостях, в случае утечки топлива, не могли скапливаться пары топлива. Если два и более бака имеют взаимосвязанные выходные отверстия, эти баки должны считаться одним баком и воздушные полости в этих баках должны быть взаимосвязаны, чтобы предотвратить перетекание топлива из одного бака в другой вследствие разности давлений в воздушных полостях баков.
- (е) Максимальные достигаемые температуры поверхностей всех элементов в топливном баке должны быть на величину установленного запаса меньше наиболее низкой ожидаемой температуры самовоспламенения топлива или паров топлива в баке. Соответствие этому требованию должно быть показано во всех условиях эксплуатации, как при нормальной работе, так и при отказах любых элементов внутри бака.

БАС-ВТ.965. Испытания топливных баков

- (а) Каждый топливный бак должен быть способен выдерживать испытание соответствующим давлением, приведенным в данном пункте, без повреждения и потери герметичности.
- (b) Каждый металлический бак стандартного типа, каждый неметаллический бак, который не подкреплен элементами конструкции БВС-ВТ, должен быть испытан избыточным давлением величиной 0.25 кгс/см².
- (с) Для каждого неметаллического бака, который подкреплен элементами конструкции БВС-ВТ и сконструирован соответствующим образом с использованием соответствующих материалов, с реальной или симулируемой поддержкой – давление 0,14 кгс/см², для первого бака специальной конструкции. Поддерживающая конструкция выдерживать критические силовые нагрузки, возникающие в условиях полёта или при посадке, в сочетании с нагрузкой давления топлива, образующейся при соответствующих этим условиям ускорениях.

БАС-ВТ.967. Установка топливного бака

- (а) Каждый топливный бак, за исключением установленных на БВС-ВТ, предназначенных для полётов на высотах до 10 м в зоне прямой видимости, должен быть закреплен так, чтобы нагрузки от массы топлива, действующие на бак, не концентрировались на незакрепленных поверхностях бака. Кроме того, должны учитываться следующие положения:
- (1) Для предотвращения трения между баком и поддерживающей его конструкцией должны устанавливаться прокладки.
- (2) Прокладки должны быть изготовлены из неабсорбирующих материалов либо из материалов, обработанных соответствующим образом, предохраняющим от поглощения жидкостей.
- (3) Если используются мягкие баки, их оболочки должны закрепляться таким образом, чтобы они не подвергались воздействию гидравлических нагрузок от топлива.
- (4) Каждая внутренняя поверхность баковых отсеков должна быть гладкой, без выступов, способных привести к повреждению оболочки, за исключением случаев, когда:
- (і) приняты меры для защиты оболочки в этих местах; или
- (ii) сама конструкция оболочки обеспечивает такую защиту.
- (5) В надтопливном пространстве каждого мягкого бака должно поддерживаться положительное давление во всех условиях эксплуатации, кроме особых случаев, для которых показано, что нулевое или отрицательное давление в баке не приводит к его схлопыванию.
- (6) Неправильное закрытие или потеря крышки заливной горловины не должны приводить к образованию течи топлива по принципу сифона (допускаются лишь небольшие выплескивания) или схлопыванию мягких баков.
- (b) Каждый отсек для размещения бака должен иметь вентиляцию и дренаж для предупреждения скопления воспламеняющихся жидкостей и паров. Каждый отсек конструкции БВС-ВТ, смежный со встроенным баком, также должен иметь вентиляцию и дренаж.
- (с) На БВС-ВТ, за исключением БВС-ВТ, предназначенных для полётов на высотах до 10 м в зоне прямой видимости, топливный бак нельзя располагать перед противопожарной перегородкой в отсеке двигателя. Между топливным баком и противопожарной перегородкой должен быть зазор не менее 13 мм. Никакая часть обшивки гондолы двигателя,

лежащая непосредственно за основным выходом охлаждающего воздуха из двигательного отсека, не должна быть стенкой бака.

(d) Топливные баки и прочие элементы топливной системы должны быть сконструированы, размещены и смонтированы таким образом, чтобы сохранить топливо в условиях вынужденной посадки, указанных в БАС-ВТ.561.

БАС-ВТ.969. Расширительное пространство топливного бака

Каждый топливный бак или каждая группа топливных баков с взаимосвязанной дренажной системой должны иметь расширительное пространство объемом не менее 2% от общей емкости баков. При нормальном стояночном положении БВС-ВТ на земле должна быть исключена возможность непреднамеренного заполнения этого пространства.

БАС-ВТ.971. Отстойник топливного бака

- (а) Каждый топливный бак, за исключением топливных баков, установленных на БВС-ВТ, предназначенных для полётов на высотах до 10 м в зоне прямой видимости, должен иметь отстойник с эффективной емкостью при любом наземном положении БВС-ВТ не менее большей из нижеследующих величин: 0,1% емкости бака или 120 см3, если не выполняются следующие условия:
- (1) топливная система имеет отстойный резервуар или камеру со сливом емкостью более $25~{\rm cm}^3$.
- (2) сливные отверстия каждого топливного бака расположены так, что при любом наземном положении БВС-ВТ вода будет стекать из всех частей бака в отстойный резервуар (или камеру).
- (b) Слив из отстойников, отстойных камер и отстойных резервуаров, требуемый настоящим пунктом, должен соответствовать требованиям к сливным устройствам, приведенным в БАС-ВТ.999(b)(1)(2)(3).
- (с) Конструкция каждого топливного бака, указанного в (а), должна обеспечивать возможность слива опасного количества воды из каждой части бака в отстойник при любом наземном положении БВС-ВТ, ожидаемом в эксплуатации.
- (d) Каждый отстойник топливного бака, указанного в (a), должен иметь сливное устройство, обеспечивающее слив содержимого отстойника на земле.

БАС-ВТ.973. Заправочная горловина топливного бака

- (а) Заправочная горловина топливного бака не должна допускать попадание пролитого топлива в отсек, где размещается топливный бак, или в любую другую часть БВС-ВТ.
- (b) Крышка каждой заправочной горловины должна обеспечивать герметичное закрытие горловины бака. Однако в крышке допускаются небольшие отверстия для вентиляции или для прохода топливомера.

БАС-ВТ.975. Дренаж топливных баков и карбюраторов

- (а) Каждый топливный бак должен сообщаться с атмосферой через верхнюю часть расширительного пространства с тем, чтобы обеспечивался эффективный дренаж при любых нормальных режимах полета. Каждый выход дренажа в атмосферу должен быть расположен и выполнен таким образом, чтобы свести к минимуму возможность его забивания льдом или другими посторонними частицами.
- (b) Дренажная система, за исключением дренажной системы БВС-ВТ, предназначенных для полётов на высотах до 10 м в зоне прямой видимости, должна быть спроектирована таким минимуму чтобы свести образом, К возможность выплескивания топлива через отверстие дренажное на источник воспламенения в случае опрокидывания при посадке, эксплуатации в наземных условиях, если только не показано, что опрокидывание является событием маловероятным.
- (c) Дренаж карбюратора. Каждый карбюратор со штуцером для отвода паров должен иметь трубопровод для отвода паров топлива в один из топливных баков.

БАС-ВТ.977. Заборник топлива из баков

- (а) Заборник топлива из бака или вход в баковый насос должен иметь защитную сеткуфильтр. Эта сетка-фильтр должна:
- (1) для БВС-ВТ с поршневыми двигателями иметь размер ячейки не более 3,2 мм;
- (2) предотвращать прохождение частиц, которые могут ограничить расход топлива или повредить любой элемент топливной системы БВС-ВТ.
- (b) Проходное сечение каждого фильтра на заборнике или на входе бакового насоса за исключением установленных на БВС-ВТ, предназначенных для полётов на высотах до 10 м в зоне прямой видимости, должно не менее

чем в пять раз превышать площадь проходного сечения трубопровода подачи топлива из бака в двигатель.

- (с) Диаметр каждого фильтра должен быть не меньше диаметра заборника топлива из бака.
- (d) К каждому фильтру должен быть обеспечен доступ для проверки и очистки.

ПОДСИСТЕМА ЭЛЕКТРОПИТАНИЯ ДЛЯ СОЗДАНИЯ МОЩНОСТИ, НЕОБХОДИМОЙ ДЛЯ ДВИЖЕНИЯ

БАС-ВТ.981. Аккумулирование энергии, эксплуатационные характеристики и индикация

- (а) Каждая система электропитания, аккумуляторы, включая должна быть сконструирована и размещена таким образом, чтобы гарантировать подачу энергии в объёме, достаточном нормального для функционирования любых двигателя нормальных эксплуатационных условиях.
- (b) Зарядное устройство для аккумулятора должно рассматриваться как часть БАС-ВТ. Зарядное устройство или сами аккумуляторы должны иметь индикаторы неисправности и состояния зарядки.
- (c) Должен быть определён остаток запаса энергии, который недоступен для использования в полёте.
- (d) Пригодность и надёжность аккумуляторной батареи должны быть подтверждены опытом эксплуатации или испытаниями.
- (е) Должны быть установлены характеристики аккумулятора, включая отказные режимы (например, тепловой разгон, вздутие, взрыв, выброс токсичных веществ). Аккумуляторные ячейки и другие компоненты системы должны быть собраны и установлены так, чтобы минимизировать последствия отказов.
- (f) Каждый аккумулятор должен быть сконструирован таким образом, чтобы обеспечивался равномерный заряд и разряд аккумуляторных ячеек. Допускается применение ручного переключателя источника энергии.

БАС-ВТ.983. Аккумулирование энергии. Безопасность

(а) Установка аккумуляторной батареи должна быть сконструирована таким образом, чтобы предотвратить разрушительный эффект

- при взрыве батареи в случае ее неисправности.
- (b) Конструкция аккумуляторной батареи должна учитывать возможность возникновения самоподдерживающихся, неуправляемых повышений температуры или давления. Соответствующие средства защиты следует выполнить в соответствии с (a)(1).
- (с) Коррозийные жидкости исходящие из любой аккумуляторной батареи, окружающую должны повреждать прилегающие конструкцию или другие системы, оборудование или электрическую сеть БВС-ВТ так, чтобы вызвать ситуацию неисправности, которая не соответствует БАС-BT.1309(b).
- (d) Каждая установка аккумуляторной батареи средства должна иметь предотвращения любого разрушительного влияния или на конструкцию основные системы, которое быть может максимальным количеством тепла, которое батарея может производить во время короткого замыкания батареи или ее отдельных ячеек.
- (е) Если не было доказано, что выделение газов или жидкостей из аккумуляторной батареи невозможно, отсек её размещения должен иметь вентиляцию и дренаж.
- (f) Система управления и мониторинга батареи должна иметь:
- (1) автоматическую функцию управления скоростью зарядки аккумуляторной батареи, чтобы предотвратить перегрев или чрезмерную зарядку батареи;
- (2) систему измерения температуры и предупреждения о перегреве со средствами автоматического отсоединения аккумуляторной батареи от зарядного устройства в случае перегрева батареи;
- (3) систему определения неисправности и предупреждения со средствами автоматического отсоединения аккумуляторной батареи от зарядного устройства в случае неисправности батареи.
- (4) иметь защиту от перезаряда и критического разряда аккумуляторов, в том числе глубокого разряда или неравномерного разряда, если необходимо для данного типа аккумулятора.
- (g) Каждая установка аккумуляторной батареи, чья функция требуется для безопасной работы
- БВС-ВТ, должна включать в себя средство мониторинга и предупреждения, обеспечивающее индикацию для внешнего экипажа БВС-ВТ, когда состояние зарядки батарей падает ниже уровней, которые

считаются приемлемыми для начала полёта БВС-ВТ.

- (h) Инструкции по поддержанию летной годности, требуемые БАС-ВТ.1529, должны содержать эксплуатационные требования по измерениям емкости батарей с определёнными интервалами, чтобы подтвердить, что батареи, работа которых требуется для безопасной работы БВС-ВТ. будут выполнять предназначенные им функции в течение того времени, на которое они установлены в БВС-ВТ. Инструкции по поддержанию летной годности должны также содержать эксплуатационные процедуры для оценки деградации других повреждений И аккумуляторных батарей, находящихся на длительном хранении, чтобы предотвратить замену аккумуляторных батарей, чья работа требуется для безопасной работы БВС-ВТ, аккумуляторными батареями, деградированной способностью сохранения заряда или другими повреждениями, возникшими в связи с длительным хранением при низком состоянии зарядки.
- (i*) Каждая аккумуляторная батарея должен быть установлен так, чтобы минимизировать последствия возникновения отказных режимов, определённых в соответствии с БАС-ВТ.981(e). Конструктивные меры предосторожности должны включать в себя:
- (1) Предоставление экипажу соответствующей информации для противодействия (например, данные о температуре или давлении),
- (2) Уменьшение последствий теплового разгона или возгорания, и подтверждение, что окружающая конструкция может выдерживать температурные нагрузки,
- (3) Проектирование отсека размещения аккумулятора таким образом, чтобы он мог выдерживать последствия перегрузки давлением или вздутия аккумулятора.

БАС-ВТ.985. Аккумулирование энергии. Установка

- (а) Установка батареи должна быть в состоянии выдержать эксплуатационные инерционные нагрузки.
- (b) Условия установки, окружающие условия и предполагаемое использование всех батарей должны соответствовать всем эксплуатационным, техническим требованиям и требованиям безопасности, установленным производителем батарей.
 - (с) Должны быть средства, чтобы

- минимизировать риск перегрева батареи/взрыва (например, охлаждение, датчик температуры, активная система управления батареей).
- (d) Информация об аккумуляторных батареях, их эксплуатации, обслуживания, обращения с ними, ограничениях по безопасности и условия исправной работы батареи должны быть представлены в соответствующих руководствах.
- (е) Каждый аккумулятор должен образом, чтобы установлен таким минимизировать возможность его повреждения взаимодействия c окружающей конструкцией БВС-ВТ при нормальной эксплуатации. Кроме того, должны быть предприняты меры для предотвращения трения компонентов установки аккумулятора друг об друга и об окружающую конструкцию, если такое трение может возникнуть.

ЭЛЕМЕНТЫ ТОПЛИВНОЙ СИСТЕМЫ

БАС-ВТ.991. Топливные насосы

- (а) Соответствие пункту БАС-ВТ.955 должно обеспечиваться при отказе:
- (1) Любого насоса, за исключением насосов, одобренных и установленных как части двигателя, прошедшего сертификацию типа; или
- (2) Любого компонента, необходимого для работы насоса; за исключением случая отказа двигателя, обеспечивающего работу этого насоса.
- (3) Работа любого топливного насоса не должна влиять на работу двигателя так, чтобы вызвать разрушение, независимо от мощности двигателя или рабочего состояния любого другого топливного насоса.

БАС-ВТ.993. Трубопроводы и арматура топливной системы

- (а) Каждый трубопровод топливной системы должен быть установлен и закреплен так, чтобы он не испытывал чрезмерной вибрации и выдерживал нагрузки от давления топлива и воздействие полетных перегрузок, ожидаемых в условиях эксплуатации.
- (b) Во всех трубопроводах топливной системы, соединенных с частями БВС-ВТ, между которыми возможно относительное перемещение, должны быть предусмотрены меры, обеспечивающие необходимую гибкость (подвижность).
 - (с) [Зарезервирован]

- (d) В каждом гибком соединении трубопроводов топливной системы, которые могут находиться под давлением и подвергаться воздействию осевых нагрузок, должны применяться гибкие шланги или другие компенсирующие элементы.
- (е) Гибкие шланги, на которые могут неблагоприятно воздействовать высокие температуры, не должны устанавливаться в местах, где во время работы двигателя или после его выключения имеют место высокие температуры.

БАС-ВТ.995. Топливные краны

- (а) Должен быть предусмотрен топливный кран, позволяющий быстро перекрывать подачу топлива к каждому двигателю отдельно.
- (b) Там, где имеются более одного источника подачи топлива, должны иметься средства для обеспечения независимого питания от каждого источника.
- (c) Перекрывные краны не должны находиться со стороны двигателя относительно любой пожарной перегородки.

БАС-ВТ.997. Топливный сетчатый или другой фильтр

- (а) Между выходом из топливного бака и входом в первый агрегат топливной системы, который чувствителен к загрязнениям в топливе, должен быть установлен топливный сетчатый фильтр или фильтр другой конструкции.
 - (b) Такой топливный фильтр должен:
- (1) Быть доступным для слива отстоя и очистки и иметь быстросъемную сетку или фильтроэлемент.
- (2) Иметь отстойник со сливом, за исключением случая, когда слив не нужен, если сетчатый или другой фильтр легко снимается для слива отстоя и очистки.
- (3) Быть установлен таким образом, чтобы его вес не нагружал присоединенные трубопроводы и входной и выходной штуцеры самого фильтра, если не предусмотрены достаточные запасы прочности трубопроводов и штуцеров во всех случаях нагружения; и
- (4) Иметь средства для удаления любого загрязнения из топлива, которое может нарушить подачу топлива через элементы топливной системы БВС-ВТ или двигателя, необходимые для успешной эксплуатации БВС-ВТ и двигателя.

БАС-ВТ.999. Сливные устройства топливной системы

- (а) На БВС-ВТ должно иметься, по крайней мере, одно доступное сливное устройство в самой нижней точке каждой топливной системы для обеспечения слива топлива из системы при любом наземном положении БВС-ВТ, ожидаемом в эксплуатации.
- (b) Каждое сливное устройство, требуемое (a), должно:
- (1) Обеспечивать слив топлива без попадания сливаемого топлива на любые части БВС-ВТ.
- (2) Иметь ручные или автоматические устройства для надежного фиксирования в закрытом положении;
 - (3) Иметь сливной кран (клапан), который:
- (і) имеет легкий доступ и способен легко открываться и закрываться;
- (ii) размещен или защищен таким образом, чтобы предотвратить утечку топлива в случае посадки с убранным шасси.

МАСЛЯНАЯ СИСТЕМА

БАС-ВТ.1011. Двигатели. Общие положения

- (а) Двигатель должен иметь независимую масляную систему, обеспечивающую питание его необходимым количеством масла с температурой, не превышающей допустимую для непрерывной безопасной эксплуатации БВС-ВТ.
- (b) Располагаемый запас масла в масляной системе двигателя должен быть не менее произведения продолжительности полета БВС-ВТ в критических условиях эксплуатации на допустимый максимальный расход лвигателем В тех же условиях, плюс дополнительное количество масла обеспечения циркуляции масла в системе. Для БВС-ВТ с поршневым двигателем расходуемый запас масла можно определить расчетом, принимая, что на каждые 40 объемных частей расходуемого топлива необходима 1 часть
- (c) Могут быть использованы соотношения топлива и масла, отличные от указанных в (b), если они подтверждаются данными по расходу масла двигателем.
- (d) Системы охлаждения масла для каждого двигателя должны быть способны поддерживать температуру масла на входе в двигатель не выше максимальной установленной величины. Это должно быть

НЛГ БАС-ВТ

продемонстрировано летными испытаниями.

БАС-ВТ.1013. Масляные баки

- (а) Опоры каждого масляного бака должны быть сконструированы так, чтобы нагрузки на бак не были сконцентрированы в одном месте. Также масляные баки:
- (1) Должны иметь щитки, если это необходимо, чтобы предотвратить трение между баком и его опорами.
- (2) Щитки должны быть изготовлены из материала, который не впитывает масло, или должны быть приняты меры по предотвращению впитывания ими масла.
- (3) Если используется гибкая обшивка бака, она должна крепиться таким образом, чтобы ей не приходилось выдерживать нагрузки жидкостей.
- (4) Внутренние поверхности, прилегающие к обшивке, должны быть гладкими и без выступов, которые могут привести к износу, если только:
- (i) не предусмотрены меры по защите общивки в этих местах; или
- (ii) конструкция самой обшивки не обеспечивает такую защиту.
- (5) Должно поддерживаться положительное давление в паровом пространстве каждого мягкого бака при любых условиях эксплуатации, за исключением определенного условия, при котором показано, что нулевое или отрицательное давление не приведет мягкий бак к разрушению.
- (6) Утечка масла (за исключением незначительных разливов) или разрушение мягких масляных баков не могут быть результатом неправильного обеспечения или потери мощности масляного фильтра.
- (7) Если масляный бак устанавливается в отсеке двигателя, он должен быть изготовлен из огнестойкого материала за исключением варианта, когда общая ёмкость масла системы, включая баки, трубы и маслосборники меньше 5 литров.
- (b) Каждый отсек бака должен иметь вентиляцию и дренаж, чтобы предотвратить накопление горючих жидкостей или паров. Каждый отсек, примыкающий к баку, который является неотъемлемой частью конструкции БВС-ВТ, должен быть также иметь вентиляцию и дренаж.
- (с) Должна быть возможность легко проверить уровень масла.
- (d) Каждый масляный бак должен выдерживать без повреждения все

вибрационные, инерционные и гидравлические нагрузки, возникающие в эксплуатации.

БАС-ВТ.1015. Испытания масляных баков

Масляные баки, установленные на БВС-ВТ, должны соответствовать следующим требованиям:

- (а) каждый масляный бака должен быть сконструирован и установлен так, чтобы он мог выдерживать без потери герметичности внутреннее давление не менее $0,35~\rm krc/cm^2$ (34 кПа).
- (b) каждый бак-кессон должен быть сконструирован и установлен так, чтобы он мог выдерживать без потери герметичности давление, достигнутое при максимальном ускорении
- БВС-ВТ с полным баком, при одновременном приложении критических нагрузок на конструкцию.
- неметаллический бак (с) каждый co стенками, поддерживаемыми конструкцией БВС-ВТ и изготовленными соответствующим образом использованием реальными материала бака, И c условиями имитируемыми крепления давление в 14 кПа для первого специальной конструкции. Поддерживающая конструкция должна выдерживать критические нагрузки, случающиеся в полете или в условиях посадки, объединенные с нагрузками давления, появляющимися результате соответствующих ускорений.

БАС-ВТ.1017. Трубопроводы и арматура масляной системы

- (а) Трубопроводы БВС-ВТ, за исключением БВС-ВТ, предназначенных для полётов на высотах до 10 м в пределах прямой видимости, должны соответствовать требованиям топливной системы в пункте БАС-ВТ.993.
- (b) Трубопроводы суфлирования двигателя должны быть выполнены так, чтобы:
- (1) конденсат водяных паров, который может замерзнуть и перекрыть магистраль, не накапливался в какой-либо точке трубопровода;
- (2) выбросы системы суфлирования не создавали опасности возникновения пожара в случае вспенивания масла;
- (3) выброс из системы суфлирования не производился в систему подвода воздуха к двигателю;
- (4) выход из воздуховодов был защищен от попадания посторонних предметов;

(5) выход из воздуховодов должен также быть зашишён от обледенения.

БАС-ВТ.1019. Масляные фильтры

Каждый сетчатый ИЛИ другого типа масляный фильтр силовой установки поршневыми двигателями должен быть выполнен и установлен так, чтобы при полной закупорке сетки или другого фильтрующего обеспечивалась бы элемента нормальная прокачка масла через остальную часть системы.

БАС-ВТ.1021. Сливные устройства масляной системы

- В масляной системе должно быть предусмотрено сливное устройство (устройства), обеспечивающее безопасный слив масла из системы. Оно должно:
 - (а) быть доступным;
- (b) иметь ручные или автоматические устройства для надежной фиксации в закрытом положении.
- (с) быть расположенным или защищенным таким, чтобы предотвратить его повреждение в эксплуатации.

БАС-ВТ.1023. Масляные теплообменники

Теплообменники вместе с элементами их крепления должны выдерживать без повреждения и изменения геометрических размеров вибрационные и инерционные нагрузки, а также температуры и давления рабочих жидкостей, которые могут возникать в ожидаемых условиях эксплуатации.

БАС-ВТ.1027. Трансмиссия и редукторы. Общие положения

- (а) Системы смазки трансмиссии и редукторов, функционирующие под давлением, должны соответствовать требованиям, изложенным в пунктах БАС-ВТ.1013 (за исключением подпункта (с)), БАС-ВТ.1015, БАС-ВТ.1017, БАС-ВТ.1021, БАС-ВТ.1337(d).
- (b) Каждая система смазки под давлением должна иметь масляный сетчатый или иной фильтр, через который проходят все потоки смазки и которая должна:
- (1) Быть сконструирована так, чтобы удалять любые загрязнения из смазочного материала, которые могут повредить компоненты трансмиссии или системы привода винта или препятствовать процессу смазки в такой степени, которая может представлять

опасность:

- (2) Быть оснащена средством, указывающим на накопление загрязнений на фильтре или сетке в момент открытия перепуска или перед этим моментом, требуемым в соответствии с (b)(3);
- (3) Быть оборудована устройством перепуска, спроектированным и установленным таким образом, чтобы:
- (i) смазочный материал поступал в обычном темпе через оставшуюся часть системы с полностью засоренным фильтром;
- (ii) соответствующим размещением перепускного устройства сводилась к минимуму возможность попадания накопленных загрязнений в перепускную магистраль.
- (c) Ha заборном устройстве каждого масляного бака или маслоотстойника, через которое осуществляется подача смазки к системам привода винта или их элементам, должна иметься защитная предотвращения попадания в систему смазки любого предмета, который воспрепятствовать течению смазки ОТ заборного устройства фильтру, К требующемуся В соответствии Требования (b) не распространяются защитные сетки, установленные на заборные устройства масляных баков маслоотстойников.
- (d) Системы смазки типа разбрызгивания для редукторов системы привода винта должны соответствовать требованиям, изложенным в пунктах БАС-ВТ.1021 и БАС-ВТ.1337(d).

СИСТЕМА ОХЛАЖДЕНИЯ

БАС-ВТ.1041. Общие положения

- (а) Система охлаждения силовой установки должна обладать способностью поддерживать температуру компонентов силовой установки в пределах, установленных для этих компонентов при всех ожидаемых условиях эксплуатации, на которые запрашивается сертификат, а также после нормального выключения двигателей. К элементам силовой установки относятся (но не ограничиваются этим перечнем): двигатели, элементы системы привода несущего винта, вспомогательные силовые установки, а также смазочные охлаждающие жидкости, И используемые в этих элементах.
- (b) Соответствие пункту БАС-ВТ.1041(a) должно быть продемонстрировано в летных испытаниях, проводимых в условиях,

оговоренных в этом разделе.

БАС-ВТ.1043. Испытания системы охлаждения

- (а) **Общие** положения. Испытания, оговоренные в БАС-ВТ.1041(b), должны проводиться при соблюдении следующих условий:
- (1) Если испытания проводятся при условиях, отличающихся условий максимальной температуры окружающей атмосферы, определенной (b), зарегистрированные величины температур силовой установки должны быть внесены поправки в соответствии с (c) и (d), если нет более рациональных способов корректировки.
- (2) Величины температур с учетом поправок, определенных согласно (а)(1), не должны превышать установленных пределов.
- (3) Топливо, применяемое испытаний системы охлаждения, должно быть самого низкого сорта, одобренного ДЛЯ качество смеси двигателей, должно соответствовать использованию при нормальных режимах полета, на которых проводятся испытания системы охлаждения.
- (4) Методика испытаний должна соответствовать требованиям, оговоренным в пункте БАС-ВТ.1045.
- (b) Максимальная температура окружающей атмосферы. Максимальная температура окружающей атмосферы на уровне моря должна быть не ниже 38°С. Далее, предполагается снижение температуры на 6,5°С с увеличением высоты на каждые 1000 м от высоты уровня моря до высоты, на которой достигается температура минус 56,7°С. Однако для установок, приспособленных для условий зимы, заявитель может выбрать максимальную температуру на уровне моря меньше, чем 38°С.
- (с) Поправочный коэффициент (исключая гильзы цилиндров). Если не применяется более рациональная коррекция, то температуры охлаждающих жидкостей компонентов И силовой установки (исключая гильзы для установлены цилиндров), которых должны температурные пределы, быть скорректированы путем прибавления к этим величинам разности между максимальной температурой окружающей атмосферы температурой окружающей атмосферы, зарегистрированной при испытаниях системы охлаждения в момент первого достижения установки компонентом силовой жидкостью максимальной температуры.

коэффициент (d) Поправочный для температур гильз цилиндров. Температуры цилиндров должны быть скорректированы путем прибавления к ним 0,7 величины разности между максимальной температурой окружающей атмосферы температурой окружающей атмосферы, зарегистрированной при испытаниях системы охлаждения в момент первого достижения максимальной температуры гильзы цилиндра.

БАС-ВТ.1045. Методика испытаний системы охлаждения

- (a) Общие положения. На каждом режиме полета испытания системы охлаждения должны проводиться на БВС-ВТ:
- (1) При конфигурации, наиболее критической для системы охлаждения.
- (2) В условиях, наиболее критических для системы охлаждения.
- (b) Стабилизация температуры. При испытаниях системы охлаждения температура считается «стабилизированной», когда скорость изменения ее не превышает 1°С в минуту. При стабилизации температур жидкостей в двигателе и компонентов силовой установки должны выполняться следующие требования:
- (1) Для каждого БВС-ВТ на каждом режиме полета:
- (i) температуры должны достигнуть установившихся значений в условиях, соответствующих началу исследуемого режима полета: или
- (ii) если при обычной эксплуатации условия перехода к началу исследуемого режима полета не являются такими, при которых температуры жидкостей были бы стабилизированы, то до начала исследуемого режима должны быть выполнены этапы полета во всем диапазоне условий, предшествующих этому режиму, чтобы температуры могли достичь их естественных значений.
- (2) Для БВС-ВТ каждого испытанию системы охлаждения на этапе набора высоты при работе двигателей на режиме взлетной мощности должен предшествовать период висения, в течение которого температура жидкостей двигателе температура установки компонентов силовой стабилизируются.
- (c) **Продолжительность** испытаний. Испытания системы охлаждения на каждом режиме полета должны продолжаться до:
 - (1) Стабилизации температуры или пока не

пройдет 5 мин после регистрации наибольшего значения температуры.

- (2) Окончания данного режима полета.
- (3) Достижения эксплуатационного ограничения.
- (d) Если на каком-то из режимов было достигнуто эксплуатационное ограничение до окончания режима, должно быть установлено ограничение длительности выполнения данного режима.

жидкостное охлаждение

БАС-ВТ.1061. Установка

- (а) Общие положения. Каждый двигатель жидкостного охлаждения должен иметь независимую систему охлаждения (включая бак с охлаждающей жидкостью), установленную таким образом, чтобы во время заправки и в процессе работы в любой части системы, кроме расширительного пространства бака с охлаждающей жидкостью, не задерживался пар и воздух. Кроме того:
- (1) опоры каждого бака с охлаждающей жидкостью были такими, чтобы действующие на бак нагрузки распределялись на большую часть поверхности бака;
- (2) между баком и его креплением были установлены прокладки или другие средства изоляции, предотвращающие трение;
- (3) прокладки или любые другие средства изоляции не поглощали воспламеняющиеся жидкости или были обработаны таким образом, чтобы предотвратить их поглощение.
 - (b) Бак с охлаждающей жидкостью.
- (1) Каждый бак с охлаждающей жидкости должен:
- (і) иметь ёмкость не менее 10% от емкости системы охлаждения;
- (ii) выдерживать вибрационные, инерционные и гидравлические нагрузки, которым он может подвергнуться в эксплуатации;
- (iii) каждый бак с охлаждающей жидкостью должен иметь расширительное пространство объемом не менее 10% от общей системы охлаждения;
- (iv) должна быть исключена возможность непреднамеренного заполнения расширительного пространства при нормальном стояночном положении БВС-ВТ.
- (с) Заливная горловина. Каждая заливная горловина бака с охлаждающей жидкостью должна быть обозначена, как указано в БАС-ВТ.1557(с). Кроме того:

- (1) Должно быть исключено попадание пролитой жидкости в отсек бака с охлаждающей жидкостью или в любую часть БВС-ВТ помимо самого бака.
- (2) Каждая заглубленная заливная горловина охлаждающей жидкости должна иметь сливное устройство, исключающее попадание сливаемой жидкости на какую-либо часть БВС-ВТ.
- (d) Трубопроводы и арматура. Все трубопроводы и арматура системы охлаждения должны отвечать требованиям БАС-ВТ.993 за исключением того, что внутренний диаметр входных и выходных трубопроводов охлаждения двигателя должен быть не меньше диаметра соответствующих соединительных входных и выходных патрубков двигателя.
- (е) Радиаторы. Каждый радиатор охлаждения должен выдерживать вибрационные и инерционные нагрузки и нагрузки от давления охлаждающей жидкости, которым он подвергается в эксплуатации. Кроме того:
- (1) Крепление каждого радиатора должно допускать расширение от действия рабочих температур и исключать передачу опасной вибрации на радиатор.
- (2) Если используется воспламеняющаяся жидкость, то канал воздухозаборника радиатора с охлаждающей жидкостью должен быть расположен так, чтобы в случае пожара пламя из мотогондолы не попадало на радиатор.
- (f) **Сливные устройства**. На БВС-ВТ должно быть предусмотрено сливное устройство, которое:
- (1) Обеспечивает слив из всей системы охлаждения (включая бак с охлаждающей жидкостью, радиатор и двигатель) при нормальном стояночном положении БВС-ВТ.
- (2) Исключает попадание жидкости на какую-либо часть БВС-ВТ.
- (3) Имеет средства надежной фиксации в закрытом положении.

БАС-ВТ.1063. Испытания баков для охлаждающей жидкости

Все баки с охлаждающей жидкостью должны пройти испытания в соответствии с пунктом

БАС-ВТ.965, с учётом указанной в нём применимости, со следующими изменениями:

(а) Испытания, требуемые в БАС-ВТ.965(b), должны быть проведены аналогично, но с давлением, представляющим собой сумму

следующих давлений максимального рабочего давления системы и большего из двух давлений – давления, возникающего при максимальной расчетной перегрузке с полным баком, или давления 0,25 кгс/см².

(b) Испытания образца бака с неметаллической оболочкой на плескание должны проводиться при рабочей температуре охлаждающей жидкости.

СИСТЕМА ПОДВОДА ВОЗДУХА

БАС-ВТ.1091. Подвод воздуха

- (а) Система подвода воздуха каждого двигателя должна обеспечивать подвод воздуха, требуемого данному двигателю при эксплуатационных условиях и маневрах, на которые запрашивается сертификат.
- (b) Если возникновение пламени обратной вспышки может представлять опасность, то каждое воздухозаборное устройство должно располагаться на наружной стороне капота.
- (с) Если возможно скопление топлива в системе подвода воздуха, то эта система должна иметь сливное устройство, которое обеспечивает слив топлива:
- (1) За пределы БВС-ВТ без попадания на его конструкцию;
 - (2) Вне путей движения выхлопных газов.

БАС-ВТ.1093. Защита системы подвода воздуха от обледенения

- (а) Поршневые и роторные двигатели. Каждая система подвода воздуха поршневого иметь средства двигателя должна предотвращения и ликвидации обледенения. Если это не может быть выполнено другими средствами, то должно быть продемонстрировано, что в воздухе, в котором отсутствует видимая влага при температуре минус 1°С (30°F) и мощности двигателей, равной 75% максимальной продолжительной:
- (1) Любой БВС-ВТ с невысотными двигателями, использующими стандартные карбюраторы типа трубки Вентури, имеет подогреватель, обеспечивающий повышение температуры воздуха на 50° C (90° F);
- (2) Любой БВС-ВТ с невысотными двигателями, использующими карбюраторы, не склонные к обледенению, имеет защищенный вспомогательный источник подвода воздуха и что нагрев воздуха из этого источника обеспечен в не меньшей степени, чем если бы осуществлялся воздухом, отбираемым из

системы охлаждения двигателя за цилиндрами;

- (3) Любой БВС-ВТ с высотными двигателями, использующими стандартные карбюраторы типа трубки Вентури, имеет подогреватель, обеспечивающий повышение температуры воздуха на 67°С (120°F);
- (4) Любой БВС-ВТ с высотными двигателями, использующими карбюраторы, не склонные к обледенению, имеет подогреватель, который может обеспечить повышение температуры воздуха:
 - (i) на 56°С (100°F); или
- (ii) не менее чем на 22°C (40°F), если используется жидкостная система сброса льда.
- (b) Поршневые и роторные двигатели с нагнетателем. Для двигателя с нагнетателем, который обеспечивает повышение давления воздуха перед подачей в карбюратор, нагрев воздуха, обусловленный наддувом, на любой высоте может быть использован соответствия если определении (a), используемый нагрев будет доступен автоматически для соответствующей высоты и условий работы при наддуве.

(с) Газотурбинные двигатели.

- (1) Должно быть показано, что каждый газотурбинный двигатель и его входные устройства могут функционировать во всем диапазоне значений мощности двигателя (включая режим малого газа) без нарастания льда на элементах двигателя или входных устройств, который будет отрицательно влиять на работу двигателя или вызовет значительную потерю мощности или тяги:
 - (і) в условиях обледенения;
- (ii) в условиях снегопада и метели без вредных воздействий на работу двигателей в пределах ограничений, установленных для эксплуатации БВС-ВТ в таких условиях.
- (2) Каждый газотурбинный двигатель при отборе воздуха, необходимого для защиты от обледенения в критических условиях, должен надежно работать на режиме малого газа на земле в течение 30 мин в атмосфере, имеющей температуру от минус 9° до минус 1°С (от 15° 30°F) И водность $0.3 \, \Gamma/M$ среднеарифметическим диаметром капель не мкм, с последующим резким переводом И кратковременной работой двигателя на режиме взлетной мощности или тяги. В период 30-минутной работы на режиме газа разрешается периодически переводить двигатель на режим средней (крейсерской) мощности или тяги по методике, одобрена которая должна быть уполномоченным органом.

ВЫХЛОПНАЯ СИСТЕМА

БАС-ВТ.1121. Общие положения

- (а) Для каждой выхлопной системы:
- (1) должны быть предусмотрены средства компенсации тепловых расширений коллекторов и патрубков;
- (2) должны быть предусмотрены средства для предотвращения возникновения местных перегревов;
- (3) выхлопные газы не должны попадать в воздухозаборники двигателей, на элементы топливной системы и сливных устройств.
- (b) Каждая часть выхлопной системы, поверхность которой имеет рабочую температуру, достаточную, чтобы зажечь воспламеняющуюся жидкость или пары, должна быть установлена или экранирована таким образом, чтобы утечки из любой содержащей воспламеняющиеся жидкости или пары, не привели к пожару вследствие попадания жидкостей или паров на любую часть выхлопной системы, включая экраны для нее.
- (с) Каждый теплообменник, отводящий выхлопные газы, должен включать в себя средства, препятствующие блокированию выхлопного отверстия после любой внутренней поломки теплообменника.

БАС-ВТ.1123. Выхлопные трубы

- (а) Выхлопные трубы должны быть теплостойкими, устойчивыми к коррозии и иметь средства для предотвращения повреждений от тепловых перемещений при рабочих температурных условиях.
- (b) Выхлопные трубы должны крепиться так, чтобы они выдерживали вибрационные и инерционные нагрузки, которым они могут подвергаться в эксплуатации.
- (с) Выхлопные трубы, соединяющиеся с элементами, между которыми возможны относительные перемещения, должны иметь гибкие соединения.

ОРГАНЫ УПРАВЛЕНИЯ И АГРЕГАТЫ СИЛОВОЙ УСТАНОВКИ

БАС-ВТ.1163. Органы управления силовой установки. Общие положения

- (а) Каждый агрегат, устанавливаемый на двигатель, должен:
 - (1) быть одобрен для установки на данный

двигатель.

54

- (2) использовать для крепления устройства, предусмотренные на этом двигателе;
- (3) быть герметизирован таким образом, чтобы предотвратить загрязнение масляной системы двигателя и самого агрегата.
- (b) Для агрегатных приводов, осуществляющих отбор мощности от любого компонента трансмиссии или системы привода винта, должны быть предусмотрены средства ограничения крутящего момента, которые предотвращают повреждение этих компонентов чрезмерной нагрузкой от агрегата, если это не обеспечено другими средствами.
- (с) Электрическое оборудование, в котором может возникать электрический разряд или искрение, должно быть установлено так, чтобы свести к минимуму вероятность контакта с любыми воспламеняющимися жидкостями или парами, которые могут оказаться в свободном состоянии.

БАС-ВТ.1165. Система зажигания двигателя

- (а) Каждая аккумуляторная система зажигания должна быть дополнена генератором, который автоматически включается в цепь в качестве запасного источника электроэнергии, обеспечивающего дальнейшую работу двигателя в случае разрядки любого аккумулятора.
- (b) Емкость аккумуляторов и мощность генераторов должны быть достаточными для одновременной работы системы зажигания двигателя и удовлетворения потребностей любых компонентов электросистемы БВС-ВТ, питающихся от этого источника.
- (с) Конструкция системы зажигания двигателя должна обеспечивать ее нормальную работу при:
 - (1) Неработающем генераторе.
- (2) Полной разрядке аккумулятора и работе генератора на нормальных эксплуатационных частотах вращения.
- (3) Полной разрядке аккумулятора и работе генератора на частотах вращения холостого хода при наличии только одного аккумулятора.
- (4) Должны быть предусмотрены средства сигнализации внешнему пилоту в случае, если неисправность любой части электросистемы вызывает непрерывный разряд любого аккумулятора, питающего систему зажигания двигателя.

ПОЖАРНАЯ ЗАЩИТА СИЛОВОЙ УСТАНОВКИ

БАС-ВТ.1181. Установленные пожароопасные зоны, включая полости

- (а) Для двигателей к пожароопасным зонам относятся:
 - (1) Отсек двигателя.
 - (2) Отсек вспомогательных агрегатов.
- (3) Любой общий отсек силовой установки, в котором отсутствует разделение между отсеком двигателя и отсеком агрегатов.

БАС-ВТ.1182. Зоны двигательного отсека за противопожарными перегородками

Компоненты, трубопроводы и арматура, установленные вне пожароопасных зон, должны быть выполнены из таких материалов и расположены на таких расстояниях от противопожарной перегородки, чтобы они не были подвержены повреждениям при воздействии на противопожарную перегородку со стороны двигательного отсека пламени с температурой не менее 1100°С в течение 15 мин. Это должно быть доказано путем испытаний или расчетом.

БАС-ВТ.1183. Трубопроводы, соединения и компоненты

- (a) 3a исключением случаев, предусмотренных в (b), каждый трубопровод, соединения и другие компоненты, подводящие воспламеняющуюся жидкость в любую зону, подверженную воздействию пламени при пожаре двигателя, должны быть огнестойкими. Если повреждение пожаром любой детали, не отвечающей критерию огнестойкости, способно вызвать утечку или просачивание воспламеняющейся жидкости из бака, то баки с воспламеняющейся жидкостью и их крепления к двигателю должны быть огнестойкости, или заключены в огнестойкий кожух. Компоненты должны быть экранированы или расположены так, чтобы обеспечивалась их гарантированная воспламенения вытекающей защита ОТ воспламеняющейся жидкости. Маслосборник (картер), образуемый элементами конструкции поршневого двигателя, емкостью менее 24 л может быть не огнестойкого исполнения и не защищаться огнестойкими экранами.
 - (b) Положения (a) не распространяются на:
- (1) Трубопроводы, соединения и компоненты, уже рассмотренные как составная часть сертифицированного типа двигателя;

- (2) Дренажные и сливные магистрали и их соединения, повреждение которых не приводит к возникновению или возрастанию пожарной опасности.
- (с) Любое сливное и дренажное (вентиляционное) устройство системы с воспламеняющейся жидкостью должно отводить жидкость или пары так, чтобы они не попали в воздухозаборник.

БАС-ВТ.1185. Воспламеняющиеся жидкости

- (а) Каждый топливный бак должен быть изолирован от двигателя пожарной перегородкой или кожухом.
- (b) Если для любого бака (резервуара), входящего в состав системы, содержащей воспламеняющиеся жидкости или газы, меры по повышению противопожарной безопасности не способны обеспечить уровень безопасности, сопоставимый с уровнем безопасности для изолированного от двигателя бака, то бак должен быть изолирован от двигателя пожарной перегородкой или кожухом.
- (с) Между баком (резервуаром) и пожарной перегородкой или кожухом, изолирующими бак. должен иметься воздушный MM, величиной менее 13 если предусмотрены эквивалентные средства, препятствующие передаче тепла из отсека двигателя.

БАС-ВТ.1187. Вентиляция

Каждый отсек, содержащий любую часть силовой установки, должен иметь средства для вентиляции.

БАС-ВТ.1189. Перекрывные средства

- (а) Должны быть предусмотрены средства перекрытия любого трубопровода, подающего воспламеняющуюся жидкость в отсек двигателя, за исключением:
- (1) Трубопроводов, арматуры и элементов, выполненных как неотъемлемая часть двигателя.
- (2) Масляных систем БВС-ВТ с поршневыми двигателями объемом цилиндров менее 8,19 литра.
- (b) Должны быть предусмотрены средства для предотвращения произвольного срабатывания каждого средства перекрытия, но позволяющие внешнему пилоту в полете открыть средство перекрытия после его срабатывания.
 - (с) Каждое средство перекрытия, а также

средства его управления должны быть сконструированы, размещены и защищены так, чтобы обеспечивалось их надежное функционирование в условиях, соответствующим условиям, возникающим при пожаре в двигателе.

(d) Краны с сервоприводом должны быть спроектированы таким образом, чтобы под действием вибраций, возможных в эксплуатации, не возникало перемещений крана относительно проектного положения (см. БАС-ВТ.1805).

БАС-ВТ.1191. Пожарные перегородки

- (а) Каждый двигатель должен быть изолирован пожарной перегородкой, экраном или эквивалентными им средствами от конструкции, органов управления, механизмов ротора и других частей, которые:
- (1) Необходимы для обеспечения управляемой посадки;
- (2) Не защищены в соответствии с БАС-ВТ.861.
- (b) Каждый обогреватель, а также виды оборудования внутреннего сгорания, применяемые в полете, должны быть изолированы от остальной конструкции БВС-ВТ пожарными перегородками, кожухами или эквивалентными им средствами.
- (c) При проверке соответствия БВС-ВТ требованиям (a) и (b) должны быть учтены в нормальном полете и на режиме авторотации вероятные пути распространения пожара под действием воздушного потока.
- (d) Каждая пожарная перегородка или кожух должны быть сконструированы так, чтобы не было проникновения воздуха, жидкости или пламени из любого двигательного отсека в другие зоны
- БВС-ВТ в количестве, способном привести к возникновению опасной ситуации.
- (е) Каждое отверстие в пожарной перегородке или кожухе должно быть закрыто плотно прилегающими огнестойкими окантовками, втулками или соединительными элементами.
- (f) Каждая пожарная перегородка и кожух должны быть огнестойкими и защищенными от коррозии.

БАС-ВТ.1193. Капот и обшивка мотогондолы

(а) Капоты и обшивка двигательного отсека должны быть сконструированы и закреплены таким образом, чтобы они были способны

- выдерживать вибрационные, инерционные и аэродинамические нагрузки, которые могут воздействовать на них в эксплуатации.
- (b) При нормальном стояночном и полетном положениях БВС-ВТ должны быть предусмотрены средства, способные обеспечить быстрый и полный слив жидкости из любой части капота или обшивки лвигательного отсека.
- (с) Слив из дренажа не должен производиться в места, в которых существует опасность возникновения пожара.
- (d) Каждая часть капота или обшивка двигательного отсека должны быть огнестойкими или огненепроницаемыми.
- обшивка (е) Каждая часть капота или двигательного отсека должны быть огненепроницаемыми, если ИΧ близкое расположение к элементам выхлопной системы или попадание на них выхлопных газов приводит к воздействию высоких температур.
- (f) Запорные устройства каждой открываемой или быстросъемной панели, капота либо обшивки двигательного отсека или трансмиссии должны быть спроектированы так, чтобы могли предотвращать опасные роторов повреждения или элементов управления, обеспечивающих безопасность случаях разрушения полета, механического повреждения обычных запорных устройств, если их разрушения не являются маловероятными.

БАС-ВТ.1194. Другие поверхности

Все поверхности, находящиеся за отсеками силовой установки или рядом с ними, кроме тех поверхностей в хвостовой части, которые не подвержены нагреву, воздействию пламени или искр, появляющихся из двигательного отсека, должны быть огнестойкими или огненепроницаемыми.

РАЗДЕЛ F – ОБОРУДОВАНИЕ

общие положения

БАС-ВТ.1301. Назначение и установка

Каждое изделие оборудования, установленного на БВС-ВТ и наземные части БАС, должно:

- (а) Быть такого типа и конструкции, чтобы в ожидаемых условиях эксплуатации (ОУЭ) могло обеспечить выполнение всех функций, необходимых для осуществления полета, в соответствии с Руководством по летной эксплуатации БВС-ВТ.
- (b) Оборудование должно быть сконструировано, изготовлено и установлено на БВС-ВТ и наземной части БАС таким образом, чтобы требуемые функции обеспечивались в условиях внешних воздействий, которые могут иметь место в процессе эксплуатации конкретной БАС в полете и на земле.
- (с) Иметь маркировку и надписи, указывающие назначение или эксплуатационные ограничения.
 - (d) Нормально работать после его установки.
- (е) Устанавливаться в соответствии с ограничениями, указанными для этого оборудования или подтвердить работоспособность наземными и лётными испытаниями в составе БАС-ВТ в ожидаемых условиях эксплуатации.
- (g) BBC-BT быть должно оборудовано аварийным источником электроэнергии, обеспечивающим в случае отказа генератора, работающего OT основного функционирование потребителей электроэнергии, необходимых ДЛЯ завершения полета соответствии Руководством летной эксплуатации БВС-ВТ, B TOM числе пилотирования и навигации БВС-ВТ.

БАС-ВТ.1303. Пилотажные и навигационные приборы

В составе БВС-ВТ должно быть установлено оборудование, обеспечивающее функционирование системы управления полетом в соответствии с БАС-ВТ.1329, а также предоставление внешнему экипажу пилотажнонавигационных данных, определённых в пункте БАС-ВТ.1723.

БАС-ВТ.1305. Приборы силовой установки

В составе БВС-ВТ должно быть установлено оборудование, обеспечивающее предоставление внешнему экипажу информации о работе силовой установки, определенной в пункте БАС-ВТ.1725.

БАС-ВТ.1309. Оборудование, системы и установки

(а) Оборудование, системы и установки, функционирование которых требуется Нормами, должны быть спроектированы и установлены так, чтобы во всех ОУЭ гарантированно выполнялись предписанные им функции.

Оборудование, системы и установки должны быть спроектированы так, чтобы опасность получения травмы членов внешнего экипажа, технического персонала и третьих лиц, а также риск материального ущерба или повреждений сводилась к минимуму.

(1) В целях обеспечения годности к полёту БАС, которые могут привести к аварии в полете, при взлете и посадке БВС-ВТ (включая оборудование, находящееся на расстоянии от БВС-ВТ) должны рассматриваться как относящиеся к БВС-ВТ.

Для того, чтобы оборудование было пригодным к полету, оно должно удовлетворять требованиям настоящего пункта.

- (2) Каждая часть оборудования, каждая система и каждое устройство:
- (i) При выполнении заданной функции не должны отрицательно влиять на характеристики, функционирование или точностные характеристики любого:
- (А) оборудования, имеющего отношение к безопасной работе; или
- (В) оборудования, для которого отсутствует средство для информирования внешнего экипажа о характере влияния, оказываемого на него оборудованием, устройством или системой.
- (ii) должно быть рассмотрено, какую опасную ситуацию они могут создать для БАС с БВС-ВТ в случае неисправности или отказа, и как предотвратить ее возникновение.
- (b) Системы БАС и связанные с ними элементы, рассматриваемые отдельно и с другими системами, должны быть такими, чтобы:
- (1) возникновение любого отказного состояния, которое могло бы воспрепятствовать

продолжению безопасного полета и посадке БВС-ВТ, являлось практически невероятным; и

- (2) возникновение любых других отказных состояний, которые могли бы уменьшить возможность БАС-ВТ или способность внешнего экипажа справиться c неблагоприятными эксплуатационными условиями, являлось невероятным.
- система, (с) Каждый вил оборудования, установка, обеспечивающие полет в аварийном случае, являются основными потребителями системы электроснабжения.

Для вероятных эксплуатационных комбинаций потребителей включения электроэнергии продолжительности их расчетной источники и система электроснабжения должны быть способны обеспечить питанием следующих потребителей электроэнергии:

- (1) Потребителей, соединенных с системой электроснабжения нормальном функционировании системы.
- (2) Основных потребителей после отказа преобразователя электроэнергии ипи аккумулятора от альтернативного источника питания, обеспечивающего резервирование в случае единичного отказа или неисправности в любой ИЗ системы питания, системы распределения или другой системы потребления.
- (3) Резервные системы, которые должны использовать резервные источники электроснабжения, для уровня поддержания безопасности (или вероятности обеспечивающегося резервными системами.
- (d) Проверку соответствия требованиям (c)(2) контролируемым онжом осуществить отключением потребителей, не влияющих на безопасность, во всех заявленных условиях полета.
- (е) Для подтверждения соответствия требованиям этого пункта конструкция электроснабжения установка системы оборудования должны быть выполнены с учетом самых плохих ожидаемых атмосферных условий и максимальных внешних воздействий, включая влияние высокочастотных помех и влияние (как прямое, так и косвенное) ударов молнии, а также учитывать требования пункта БАС-ВТ.867. Для оборудования, генерирующего, распределяющего и потребляющего электроэнергию, возможность обеспечения длительной безопасной работы в заявленных условиях эксплуатации должна быть подтверждена результатами испытаний внешние воздействия. аналитическими материалами или ссылкой на опыт эксплуатации на других однотипных БВС-ВТ.
 - данном пункте термин

относится ко всем пневматическим, электрическим, гидравлическим, механическим системам и системам силовой установки БВС-ВТ и СВП, за исключением:

- (1) систем силовой установки, являющихся частью сертифицированного двигателя;
- (2) элементов конструкции БВС-ВТ, требования к которым приведены в разделах С и D настоящих Норм.

БАС-ВТ.1310. Мощность источника энергии и система распределения

- (а) Каждый оборудования, вид установка, функционирование которых требуется данными Нормами и для которых необходимы питания, являются важными приемниками системы питания. Источники и система питания должны быть способны обеспечить питанием следующих потребителей энергоснабжения вероятных эксплуатационных комбинациях включения и вероятных продолжительностях работы:
- (1) Потребители, подключенные к нормально функционирующей системе.
 - (2) «Важные потребители» после отказа:
- (і) Любого одного двигателя на двухдвигательном БВС-ВТ.
- (іі) Любого преобразователя энергии аккумулятора.
- (3) «Важные потребители», ДЛЯ данный раздел Норм требует альтернативный источник питания, если это применимо, после любого отказа или неисправности в любой одной системе питания, системе распределения или другом потребителе.
- своему назначению электрической энергии подразделяются на три категории.
- (i) Потребители первой категории, которых необходима для обеспечения безопасного завершения полета и посадки. При отказе основных источников электроэнергии электропитание приемников должно ЭТИХ обеспечиваться от аварийных источников,
- (ii) Потребители второй категории, работа необходима для продолжения запланированного полета и посадки по заданию на полет,
- (ііі) Потребители третьей категории, прекращение электропитания которых не влияет на обеспечение выполнения безопасного полета от взлета до посадки,
- (iv) Потребители электроэнергии первой и второй категорий являются важными потребителями.

НЛГ БАС-ВТ

- (b) При установлении соответствия (a)(2) возможно контролируемое отключение потребителей, не влияющих на безопасность, во всех разрешенных условиях полета.
- (с) Для подтверждения соответствия требованиям этого подраздела конструкции и установки системы электроснабжения оборудования должны учитывать критические атмосферные и окружающие условия, включая влияние высокочастотных помех и влияние (как прямое, так и косвенное) ударов молнии. Для оборудования, генерирующего, распределяющего и потребляющего электроэнергию, требуемого или используемого в соответствии с настоящими Нормами, должна быть доказана возможность обеспечения длительной безопасной работы в ожидаемых условиях эксплуатации испытаниями на внешние воздействия, анализом конструкции или ссылкой на имеющийся сравнимый опыт эксплуатации на других БВС-ВТ.

БАС-ВТ.1316. Молниезащита электрической и электронной систем

- (а) Каждая электрическая и электронная система, которая выполняет заданную функцию и отказ которой не позволит выполнять непрерывный безопасный полет и посадку БВС-ВТ, должна быть спроектирована и установлена таким образом, чтобы:
- (1) Не было неблагоприятного влияния на функционирование в течение и после времени, когда БВС-ВТ подвергается удару молнии;
- (2) Система автоматически и своевременно восстанавливала штатную работу заданной функции после того, как БВС-ВТ подвергается удару молнии.
- (b) Для БВС-ВТ, одобренного для полета по приборам вне прямой видимости, каждая электрическая и электронная система, которая выполняет заданную функцию, отказ которой уменьшит возможности БВС-ВТ или способность внешнего экипажа реагировать на неблагоприятное условие эксплуатации, должна быть спроектирована и установлена таким образом, чтобы функционирование своевременно восстанавливалось до штатного после того, как БВС-ВТ подвергается удару молнии.

БАС-ВТ.1317. Защита от воздействия электромагнитных полей высокой интенсивности

(а) Каждая электрическая и электронная система, выполняющая функцию, отказ которой может воспрепятствовать безопасному продолжению полета и посадке БВС-ВТ (может

- привести к катастрофической ситуации), должна быть сконструирована и установлена так, чтобы:
- (1) Не оказывалось опасного влияния на выполнение данной функции как в процессе воздействия, так и после воздействия на БВС-ВТ HIRF уровня I, указанного в Дополнении D к настоящим Нормам;
- (2) Система автоматически и своевременно восстанавливала нормальное выполнение данной функции после того, как БВС-ВТ подвергся воздействию HIRF уровня I, указанного в Дополнении D к настоящим Нормам, если восстановление работоспособности не противоречит иным эксплуатационным или функциональным требованиям к системе;
- (3) На функционирование системы не оказывалось влияния как в процессе воздействия, так и после воздействия на БВС-ВТ HIRF с уровнем II, указанным в Дополнении D к настоящим Нормам.
- (b) Каждая электрическая и электронная система, выполняющая функцию, отказ которой может существенно снизить возможности БВС-ВТ и БАС в целом или способность внешнего экипажа реагировать неблагоприятные условия эксплуатации (может привести к аварийной ситуации), должна быть сконструирована и установлена таким образом, чтобы функционирование системы не оказывалось влияния при воздействии на оборудование, реализующее функцию, данную испытательного уровня 1 или 2, указанного в Дополнении D к настоящим Нормам.
- (с) Каждая электрическая И электронная система, выполняющая функцию, отказ которой снизить возможности БВС-ВТ способность внешнего экипажа реагировать на неблагоприятные условия эксплуатации (может привести к сложной ситуации), должна быть сконструирована и установлена таким образом. функционирование чтобы на системы воздействии оказывалось влияния при оборудование, реализующее данную функцию, HIRF испытательного уровня 3, указанного в Дополнении D к настоящим Нормам.

ПРИБОРЫ: УСТАНОВКА

БАС-ВТ.1323. Система измерения воздушной скорости

(а) Если на БВС-ВТ используется система измерения воздушной скорости, то при любой поступательной скорости, более 80% от скорости набора высоты по траектории полета, индикация воздушной скорости должна указывать истинную

воздушную скорость на уровне моря в условиях стандартной атмосферы с допустимой аэродинамической ошибкой, не превышающей большее из нижеследующих значений:

- $(1)\pm 3\%$ от величины протарированной скорости; или
 - (2) 10 км/ч.
- (b) Каждый измерительный прибор воздушной скорости должен иметь обогреваемую трубку приемника воздушного давления или эквивалентное средство предотвращения обледенения.

БАС-ВТ.1325. Системы статического давления

- (а) Каждый прибор со штуцером приема статического давления должен быть подключен так, чтобы изменение скорости, изменение конфигурации БВС-ВТ, изменение влажности и другие посторонние влияния не оказывали значительного воздействия на его точностные характеристики.
- (b) В горизонтальном полете без скольжения погрешности систем восприятия воздушных давлений не должны приводить к определению скорости с погрешностью, превышающей \pm 10 км/ч в диапазоне от 50 км/ч до максимально допустимой эксплуатационной скорости.
- (с) Каждый приемник статического давления должен быть спроектирован и размещен так, чтобы соотношение между давлением воздуха в системе статического давления и истинным статическим давлением наружного воздуха в условиях обледенения БВС-ВТ оставалось без изменений. Для полтверждения соответствия требованию данному онжом использовать противообледенительные средства или резервный приемник статического давления. Если показания высотомера от запасной системы статического давления отличаются от показаний высотомера при использовании основной системы статического давления более чем на 15 м, то запасная система статического давления должна быть снабжена таблицей поправок. А также:
- (1) Герметичность систем статического и полного давлений с подключенными потребителями должна быть такова, чтобы при начальных разрежениях (давлениях), соответствующих скорости 200 км/ч, изменение показаний индикатора за 1 мин не превышало:
 - (i) для систем статического давления -2 км/ч;
 - (ii) для систем полного давления 1 км/ч.
- (2) Трубопроводы систем восприятия воздушных давлений должны быть снабжены устройствами защиты от накопления влаги (отстойниками), устанавливаемыми в местах,

- доступных для осмотра и слива конденсата. При питании пилотажно-навигационных приборов коэффициент запаздывания на уровне земли каждой статической системы при подключении всех потребителей должен быть не более 1,0 с.
- (d) За исключением требований (e), в случае, когда в системе статического давления существуют как основной, так и резервный приемник статического давления, средства подключения того или иного приемника должны быть сконструированы таким образом, чтобы:
- (1) При подключении одного приемника другой блокировался;
- (2) Оба приемника не могли быть блокированы одновременно.
- (е) К негерметизированному БВС-ВТ условие (с)(1) не относится, если будет показано, что тарировка системы статического давления при подключении одного из приемников не изменяется вне зависимости от того, открыт или блокирован другой приемник статического давления.

БАС-ВТ.1327. Магнитный компас

- (а) Каждый магнитный указатель курса должен быть установлен так, чтобы его погрешность измерения под влиянием вибраций БВС-ВТ или магнитных полей оставалась в установленных пределах.
- (b) На любом курсе в горизонтальном полете остаточная девиация не должна быть более 10° .

БАС-ВТ.1329. Система управления полетом

Система управления полетом объединяет в себе датчики, приводы, вычислители и все элементы БАС-ВТ, необходимые для управления полетом БВС-ВТ. Система управления полетом должна удовлетворять следующему:

- (а) Для внешнего пилота в любое время выполнения полета должна быть обеспечена возможность выбора способов управления БВС-ВТ. Возможны следующие способы управления:
- (1) **автоматический**: в этом случае БВС-ВТ, его траекторией, скоростью и курсом полета полностью управляет бортовая система автоматического управления полётом.
- (2) автоматизированный: в этом случае внешний пилот управляет в ручном режиме отклонениями от заданной высоты, курса и воздушной скорости, получаемыми от системы управления полетом.
- (3) **ручной**: в этом случае внешний пилот управляет БВС-ВТ путем воздействия на органы управления (БАС-ВТ.1731). При этом, сигналы от органов управления передаются непосредственно

- на приводы, минуя вычислители системы управления полетом.
- (b) Система управления полетом должна иметь возможность ограничивать маневры для того, чтобы удерживать БВС-ВТ в области эксплуатационных режимов полета.
- (c) В любое время в течение полета внешний пилот для безопасного полета БВС-ВТ должен иметь возможность вмешаться в управление, кроме:
 - (1) отказной ситуации с полной потерей связи,
- (2) на этапе взлёта перед достижением минимальных безопасных параметров полета,
- (3) на этапе захода и приземления, в установленных условиях эксплуатации (ограничений).
- (d) Система управления полетом должна быть спроектирована так, чтобы на любых, заявленных на сертификацию режимах полета, в доступном для внешнего пилота диапазоне управляющих воздействий, контур автоматического управления создать нагрузок на БВС-ВТ, расчетные, привести к превышающих ИЛИ отклонениям траектории, превышающим установленные пределы. Это условие распространяется на контур автоматического управления как нормальном при функционировании системы, так и в случае неисправности, возможного c учетом вмешательства с СВП в пределах приемлемого периода времени внешнего пилота.
- (е) Система управления полетом должна быть разработана так, чтобы единичный сбой в одном из элементов системы не приводил к отказу всей системы, если уровень этого сбоя выше или равен «усложнению условий полёта». Если при этом система управления полетом выдает сигналы для управления другим оборудованием, то необходимо обеспечить надежную блокировку и соответствующую последовательность подключения, чтобы предотвратить неправильное функционирование этого оборудования.
- (f) В случае сбоя должна быть обеспечена защита против неблагоприятного влияния интегральных компонентов на управляющие сигналы.
- (g) Система управления полетом должна иметь встроенный всесторонний самоконтроль на всех этапах полета, включая предполетную подготовку.

БАС-ВТ.1331. Приборы, использующие электропитание

Для каждого из датчиков измерений, необходимых для выполнения безопасного полета и имеющих электропитание, применяется

следующее:

61

- (а) Питание должно измеряться на входе в прибор или вблизи входа. Для электрических и пневматических приборов питание считается в норме, когда напряжение или разрежение/давление соответственно находятся в установленных для прибора пределах.
- (b) Подключение приборов и их энергоснабжение должны быть устроены таким образом, чтобы:
- (1) Отказ одного прибора не влиял на нормальное электроснабжение остальных приборов.
- (2) Отказ электроснабжения от одного источника не влиял на нормальное электроснабжение от любого другого источника.
- (c) Должно быть, по крайней мере, два независимых источника питания и автоматическое или ручное средство для выбора источника.

БАС-ВТ.1337. Приборы контроля силовой установки

(а) Приборы и трубопроводы приборов.

- (1) Каждый трубопровод прибора контроля силовой установки должен отвечать требованиям пунктов БАС-ВТ.961 и БАС-ВТ.993.
- (2) Каждый трубопровод, подающий горючие жидкости под давлением, должен:
- (i) иметь ограничивающие сопла (жиклеры) или другие средства безопасности у источника давления для предотвращения чрезмерной утечки жидкости при повреждении трубопровода; и
- (ii) быть установлен и размещен таким образом, чтобы при утечке жидкостей не возникла опасность возникновения пожара.
- (3) Каждый прибор контроля основной и вспомогательной силовой установки, предусматривающей использование горючих жидкостей, должен быть установлен и размещен так, чтобы при утечке жидкости не возникла опасность возгорания.
- (b) **Топливомер.** Каждый топливомер должен быть установлен таким образом, чтобы в полете обеспечивалась индикация членам внешнего экипажа количество топлива в каждом баке. Кроме того:
- (1) топливомер должен быть проградуирован так, чтобы во время выполнения горизонтального полета при количестве топлива в баке, равном невырабатываемому остатку, величина которого определяется в соответствии с требованием БАС-ВТ.959, он показывал «нуль»;
- (2) каждый измерительный прибор, имеющий застойные зоны, в которых может скапливаться и замерзать вода, должен иметь средства, способные

обеспечить на земле дренаж воды.

- (3) При нахождении БВС-ВТ на земле должны быть средства, способные измерить количество топлива в баке БВС-ВТ (например, мерная линейка).
- (4) Каждый открытый визуальный измерительный прибор, используемый как топливомер, должен быть защищен от повреждения.
- (с) Система измерения расхода топлива. Если предусмотрена установка системы измерения расхода топлива, то, в случае возникновения неисправности измерительных элементов, для предотвращения снижения расхода топлива каждый измерительный элемент должен быть оснащен средствами для перепуска топлива.
- (d) Указатель количества масла. В каждом маслобаке должны быть предусмотрены средства для индикации количества масла:
- (1) При нахождении БВС-ВТ на земле (включая процедуру заправки каждого бака); и
- (2) В полете, если имеется система перекачки масла или резервная система подачи масла.
- (е) Индикатор ферромагнитных Трансмиссия и редукторы системы привода винта, применяются ферромагнитные материалы, должны быть оснащены датчиками, предназначенными обнаружения ДЛЯ ферромагнитных возникающих частиц, результате разрушения или износа внутри трансмиссии и редуктора. Каждый датчик обнаружения ферромагнитных частиц должен легкосъемным. Ha случай поломки устройств, удерживающих съемные элементы датчика, должны быть предусмотрены средства для предупреждения потери смазки.

ЭЛЕКТРИЧЕСКИЕ СИСТЕМЫ И ОБОРУДОВАНИЕ

БАС-ВТ.1351. Общие положения

- (а) **Мощность** электрической системы. Электрооборудование должно отвечать требованиям его предполагаемого использования. Кроме того:
- (1) Источники электроэнергии, идущие от них кабели и связанные с ними регуляторы, и предохранительные устройства должны быть способны подавать потребную мощность при соответствующем напряжении для каждого потребителя для их безопасной эксплуатации;
- (2) Соответствие (a)(1) должно быть показано посредством анализа электрических нагрузок или посредством электрических измерений с учетом электрических нагрузок, действующих в

- электрических системах при возможных сочетаниях нагрузок и при возможных величинах продолжительности их действия.
- (b) **Функционирование**. К каждой электрической системе предъявляются следующие требования:
- (1) Каждая система после того, как она установлена, должна быть:
- (i) безопасна сама по себе, по своему методу работы и по своему воздействию на другие части БВС-ВТ:
- (ii) защищена от топлива, масла, воды, других вредных веществ и от механического повреждения.
- (2) Источники электроэнергии должны нормально функционировать как совместно, так и по отдельности, за исключением случая, когда генераторы могут зависеть от аккумуляторной батареи для начального питания или стабилизации.
- (3) Отказ или неисправность любого источника электроэнергии БАС-ВТ не должны ухудшать способность любого оставшегося источника питать потребители, существенные для безопасной эксплуатации, за исключением случая, когда работа генератора, зависящего от аккумуляторной батареи для начального питания или стабилизации, может быть остановлена отказом аккумуляторной батареи.
- (4) Каждый регулятор источника электроэнергии БАС-ВТ должен обеспечивать независимую работу каждого источника, за исключением случая, когда элементы управления связаны с генераторами, которые зависят от аккумуляторной батареи для начального питания или стабилизации, и не должны нарушать связь между генератором и его аккумуляторной батареей.
- (c) Система генерирования. На БАС-ВТ с двигателями внутреннего сгорания должен иметься, по меньшей мере, один генератор, если система питает электроэнергией потребители, существенные для безопасной эксплуатации. Кроме того:
- (1) Каждый генератор должен выдавать свою номинальную продолжительную мощность.
- (2) Аппаратура, регулирующая напряжение генератора, должна обладать способностью надежно регулировать выходное напряжение каждого генератора в установленных пределах.
- (3) Каждый генератор должен иметь выключатель обратного тока, спроектированный так, чтобы он отключал генератор от аккумуляторной батареи или от других генераторов, когда возникает обратный ток, способный повредить этот генератор;

- (4) Каждый генератор должен устройство, защищающее от чрезмерно высокого напряжения, спроектированное и установленное чтобы предотвратить повреждение так, электрической системы или оборудования, питаемого этой электрической системой, которое может иметь место при выходе генератора на режим чрезмерно высокого напряжения.
- (5) На любых БАС-ВТ должно быть средство, чтобы дать немедленное предупреждение внешнему пилоту БВС-ВТ о выходе из строя какого-либо генератора.
- (d) Огнестойкость. Электрическое оборудование должно быть сконструировано и установлено так, чтобы в случае пожара в отсеке. в течение двигательном поверхность перегородки, контактирующая с огнем, нагревается до 1100° С в течение 5 минут или до меньшей температуры, обоснованной заявителем, оборудование, необходимое безопасной эксплуатации непрерывной находящееся за перегородкой, могло работать удовлетворительно не создавать и дополнительные опасности пожара. Это может быть показано при испытании или анализе.
- (е) Внешнее питание. Если предусмотрено подключение к БВС-ВТ внешних источников электроэнергии и, если эти внешние источники могут быть подключены оборудованию, К отличному от оборудования, используемого для запуска двигателей, должны быть предусмотрены средства, гарантирующие невозможность питания электросистемы БВС-ВТ от внешних источников с обратной полярностью или обратным чередованием фаз.
- (g) Отказ основной системы энергоснабжения. Должно быть показано с помощью анализа, испытаний или обоих способов, что БАС-ВТ (БВС-ВТ + СВП) может работать безопасно в условиях VLOS в течение не менее 10 мин в случае, когда штатный (основной) источник электрической энергии не работает.

БАС-ВТ.1353. Конструкция и установка аккумуляторной батареи, кроме батарей, питающих электрическую силовую установку

- (а) Каждая аккумуляторная батарея, за исключением батарей, обеспечивающих питание электрической силовой установки, обеспечивающей движение БВС-ВТ, должна быть сконструирована и установлена в соответствии с требованиями данного пункта.
- (b) В течение любого возможного режима заряда или разряда батареи в ее аккумуляторах должны быть температура и давление, не

- превышающие опасных значений. При зарядке батареи (после ее полного разряда) в аккумуляторах батареи не должно происходить неуправляемого повышения температуры при следующих условиях:
- (1) При максимальном значении регулируемого напряжения или мощности;
 - (2) В полете наибольшей продолжительности;
- (3) При наиболее возможных в эксплуатации неблагоприятных условиях охлаждения.
- (с) Соответствие требованиям (b) должно быть показано в результатах испытаний, если опыт эксплуатации подобных аккумуляторов с аналогичной установкой не показал, что в аккумуляторах поддерживаются безопасные температура и давление.
- (d) В БВС-ВТ не должны скапливаться в опасных количествах взрывоопасные или ядовитые газы, выделяемые аккумуляторной батареей при нормальной работе или в результате любой возможной неисправности в системе зарядки или при установке батареи.
- (е) Жидкости или газы, способные выделиться из аккумуляторной батареи, не должны вызывать коррозию у окружающих конструкций и у расположенного рядом основного оборудования.
- (f) Каждая аккумуляторная батарея, предназначенная для запуска двигателя, должна иметь средства защиты конструкции и основных систем от любого опасного воздействия, которое быть вызвано максимальным может тепловыделением при коротком замыкании аккумуляторной батареи или ее отдельных элементов.
- (g) В случае полной потери электропитания от генератора аккумуляторная батарея или другое вспомогательное питание должны быть способны обеспечить необходимое электропитание как минимум для безопасного завершения полёта.
- (h) В случае выхода из строя первичной системы электроснабжения и любой батареи электроснабжение в течение определенного времени должно обеспечивать достаточное количество электроэнергии с нагрузками, которые при выполнении необходимых возникают чрезвычайных мер, в соответствии с пунктом БАС-ВТ.1413. В этом случае продолжительность снабжения электроэнергией должна включать время, необходимое внешнему пилоту, чтобы установить отказ подачи электроэнергии и предпринять соответствующие действия.
- (i*) Оборудование батареи должно отвечать соответствующим национальным стандартам по безопасности применения батареи.

БАС-ВТ.1361. Устройство быстрого

отключения источников энергии

- (а) Должно быть предусмотрено устройство быстрого отключения, позволяющее легко отключать каждый источник электроснабжения от системы распределения на БВС-ВТ, за исключением случаев, приведённых в (b).
- (b) Потребители могут подключаться к сети так, чтобы они оставались под током после отключения источника от основной шины, если:
- (1) Цепи изолированы или имеют дополнительное защитное покрытие, предназначенное исключить возможность возгорания воспламеняющихся жидкостей или паров, выделяемых при утечках, или повреждениях систем, содержащих воспламеняющиеся жидкости.
- (2) Эти цепи необходимы для продолжения работы двигателя.
- (3) Эти цепи защищены устройствами защиты сети, имеющими номинал не более 5 А и подключенными непосредственно к источнику электроэнергии. Суммарный ток двух или более цепей питания, необходимых в соответствии с (b)(2) для продолжения работы двигателя, не должен превышать величину 5 А.
- (с) В случае, если после совершения запланированной или вынужденной посадки, электрическое оборудование любого БВС-ВТ может представлять угрозу жизни и здоровью персонала или спасателей, на БВС-ВТ должны быть размещены хорошо заметные и доступно изложенные инструкции, по отключению электропитания БВС-ВТ.

БАС-ВТ.1365. Электрические провода

- (а) Каждый электрический соединительный провод должен иметь поперечное сечение жилы с достаточной площадью.
- (b) Для электрических кабелей, соединителей и контактных зажимов необходимо обеспечить средства идентификации.
- (с) Электрические провода должны быть смонтированы таким образом, чтобы риск механических повреждений проводов и (или) повреждений, связанный с воздействием на них жидкостей, паров или источников тепла, был минимальным.
- (d) Каждый провод, который может нагреваться в случае повреждения или перегрузки сети, должен быть, по меньшей мере, самозатухающим, в соответствии с требованиями, установленными в Нормах летной годности, Часть-25.
- (е) наиболее важные силовые провода (включая генераторные) должны прокладываться в фюзеляже таким образом, чтобы деформации и

- натяжения не вызывали повреждения, и должны быть:
- (1) отделены от трубопроводов с воспламеняющимися жидкостями.
- (2) помещены в гибкие изоляционные трубки или иметь дополнительную изоляцию.
- (3) если провода не защищены от перегрузки аппаратами защиты цепи или другой защитой, то в условиях перегрузки они не должны вызывать опасности пожара.

БАС-ВТ.1367. Выключатели

- (а) Каждый выключатель должен:
- (1) выдерживать длительное протекание номинального тока;
- (2) иметь маркировку, указывающую принцип действия и цепь, к которой он относится;
 - (3) быть доступным для обслуживания.
- (b) Чтобы вибрации в полете не приводили к короткому замыканию, выключатель должен иметь конструкцию, чтобы был обеспечен достаточный зазор или изоляция между токонесущими частями и корпусом.

ОСВЕЩЕНИЕ

БАС-ВТ.1383. Посадочные фары

- (а) За исключением посадочных фар БВС-ВТ, предназначенных для полётов на высотах до 10 м в условиях прямой видимости, каждая необходимая для посадки и на режиме висения фара должна быть согласована с Уполномоченным органом.
- (b) Каждая посадочная фара должна быть размещена так, чтобы она обеспечивала достаточное освещение при эксплуатации БВС-ВТ ночью, в том числе на режимах висения и посадки.
- (с) Фара не должна вызывать опасности возгорания в любой конфигурации.

БАС-ВТ.1385. Установка бортовых аэронавигационных огней

- (а) Общие положения. БВС-ВТ должен быть оборудован АНО, в соответствии с требованиями данного пункта.
- (1) Аэронавигационное светотехническое оборудование должно обеспечивать выдачу информации о местоположении и направлении движения БВС-ВТ в воздухе, позволяющей легко и безошибочно распознать его ночью при нормальных условиях видимости на расстоянии, достаточном для выполнения внешним пилотом (диспетчером) действий по предотвращению

столкновения БВС-ВТ с другими воздушными судами.

- (2) Аэронавигационное оборудование должно состоять из АНО и проблескового маяка, соответствующего требованиям пункта БАС-ВТ.1401.
- (3) Каждый элемент АНО должен удовлетворять требованиям данного пункта, и каждая система в целом должна удовлетворять требованиям пунктов БАС-ВТ.1387 БАС-ВТ.1397.
- (b) **Передние АНО.** Передние АНО должны состоять из красных и зеленых огней, разнесенных по горизонтали как можно дальше друг от друга и установленных в передней части БВС-ВТ так, чтобы в полете при нормальном положении БВС-ВТ красный огонь находился на левой стороне, а зеленый на правой стороне. Каждый АНО должен быть согласован с Уполномоченным органом.
- (c) **Хвостовой АНО.** Хвостовой АНО должен быть белого цвета, устанавливаться в задней части БВС-ВТ, как можно ближе к ее концу, и быть согласован с сертифицирующим органом.
- (d) АНО должны передавать информацию об относительном курсе БВС-ВТ:
- (1) левый красный бортовой огонь в пределах угла «Л»;
- (2) правый зеленый бортовой огонь в пределах угла «П»;
 - (3) задний белый огонь в пределах угла «Х».
- (е) **Цепь электропитания освещения**. Два передних АНО и один хвостовой АНО должны быть подключены в одну цепь.
- (f) Обтекатели на источниках света и цветные светофильтры. Каждый обтекатель аэронавигационного огня или цветной светофильтр должен быть по меньшей мере пламестойким и не должен изменять свой цвет или форму, а также заметно ухудшать пропускание света во время его нормального использования.
- (g) Во время полета БВС-ВТ АНО и проблесковый маяк должны быть включаемыми и выключаемыми с СВП.
- (h) БВС-ВТ, предназначенные для выполнения полётов на высотах до 10 м в условиях прямой видимости, должен быть оборудован следующим АНО:
- (1) Передние АНО должны состоять из красных и зеленых огней, разнесенных по горизонтали как можно дальше друг от друга и установленных в передней части БВС-ВТ так, чтобы в полете при нормальном положении БВС-ВТ красный огонь находился на левой стороне, а зеленый на правой стороне.
 - (2) Хвостовой АНО должен быть белого цвета,

- устанавливаться в задней части БВС-ВТ, как можно ближе к ее концу.
- (3) Проблесковый маяк белого цвета или красного цвета, с частотой мигания в диапазоне от 40 до 100 циклов в минуту.
- (4) Два передних АНО и один хвостовой АНО должны быть подключены в одну цепь.
- (5) Во время полета БВС-ВТ АНО должны быть включаемыми и выключаемыми с СВП.

БАС-ВТ.1387 Двугранные углы распространения светового потока аэронавигационных огней

- (а) За исключением случая, предусмотренного в (е), каждый передний и хвостовой АНО должен после установки его на БВС-ВТ создавать непрерывный поток света в пределах двугранных углов, рассмотренных в данном пункте.
- (b) Двугранный угол Л (левый) образуется двумя пересекающимися вертикальными плоскостями, первая из которых параллельна продольной оси БВС-ВТ, а вторая расположена слева под углом 110° к первой плоскости, если смотреть вперед в направлении продольной оси (рисунок 1).
- (с) Двугранный угол П (правый) образуется двумя пересекающимися вертикальными плоскостями, первая из которых параллельна продольной оси БВС-ВТ, а вторая расположена справа под углом в 110° к первой плоскости, если смотреть вперед в направлении продольной оси (рисунок 1).
- (d) Двугранный угол X (задний) образуется двумя пересекающимися вертикальными плоскостями, образующими углы в 70° соответственно справа и слева к вертикальной плоскости, проходящей через продольную ось, если смотреть назад вдоль продольной оси (рисунок 1).
- (е) Если хвостовой АНО после его установки в соответствии с пунктом БАС-ВТ.1385(с) не может создавать непрерывного светового потока в пределах двугранного угла X (рассмотренного в (d)), то в пределах этого двугранного угла допустим телесный угол или углы ограниченной видимости, составляющие в сумме не больше 0,04 стерадиана, если этот телесный угол находится в пределах конуса, вершиной которого является хвостовой АНО, и элементы которого составляют угол 30° с вертикальной линией, проходящей через хвостовой АНО.

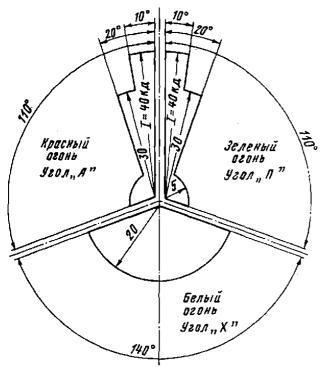


Рисунок 1. Светораспределение АНО в горизонтальной плоскости

БАС-ВТ.1389. Распределение светового потока и сила света аэронавигационных огней

- (а) Общие положения. Величины силы света, установленные в данном пункте, должны обеспечиваться современным оборудованием при рабочем положении обтекателей огней и цветных светофильтров. Величины силы света должны определяться при установившемся режиме работы источника света, создающего световой поток, эквивалентный средней светоотдаче источника нормальном рабочем напряжении электросистемы БВС-ВТ. Распределение светового потока и силы света каждого АНО должны удовлетворять требованиям (b).
- (b) Передние хвостовой Распределение и сила света передних и хвостового АНО должны быть охарактеризованы минимальные величины силы горизонтальной и вертикальной плоскостях и максимальные величины силы света в зонах перекрытия световых потоков В пределах двугранных углов Л, П и Х и удовлетворять следующим требованиям:
- (1) Величины силы света в горизонтальной плоскости. Величины света силы горизонтальной плоскости (плоскости, БВС-ВТ содержащей продольную ось перпендикулярную плоскости симметрии БВС-ВТ) должны быть не менее величины, указанной в пункте БАС-ВТ.1391.
 - (2) Величины силы света в любой вертикальной

плоскости. Каждая величина силы света в любой вертикальной плоскости (плоскости, перпендикулярной горизонтальной ланной плоскости) должна быть не менее соответствующей величины, указанной в пункте БАС-ВТ.1393.

- (3) Величины силы света в зонах перекрытия световых сигналов, расположенных рядом АНО. Сила света в любой зоне перекрытия световых сигналов расположенных рядом АНО не должна превышать величин, указанных в пункте
- БАС-ВТ.1395, за исключением случаев, когда величины силы света главного светового потока значительно превышают минимальные значения, указанные в пунктах БАС-ВТ.1391 и
- БАС-ВТ.1393, и когда величины силы света в зоне перекрытия не оказывают неблагоприятного влияния на четкость светового сигнала главного светового потока.
- (4) Если максимальная сила света передних АНО превышает 100 кд, то максимальная сила света в зоне перекрытия может превышать значения, указанные в пункте БАС-ВТ.1395, но при этом сила света в зоне перекрытия А должна быть не более 10%, а в зоне перекрытия В - не более 2,5% от максимальной силы света АНО.

БАС-ВТ.1391. Минимальные величины силы света в горизонтальной плоскости передних и хвостового аэронавигационных огней

Величина сипы света каждого аэронавигационного огня должна равняться или превышать величины, приведенные в таблице:

Двугранный угол (включающий в себя огонь)	Угол вправо и влево от продольной оси, измеренный вперед, градусов	Сила света, кандел
Л, П (передний красный и зеленый)	0-10	40
	10-20	30
	20-110	5
Х (задний белый)	110-180	20

БАС-ВТ.1393. Минимальные величины силы любой света в вертикальной плоскости передних и хвостового аэронавигационных огней

Величины сипы света каждого аэронавигационного огня должны быть равны или превышать величины, приведенные в таблице:

Углы, откладываемые вверх или	Сила света I
вниз от горизонтальной	(относительные
плоскости, градусов	единицы)

0	1,00
от 0 до 5	0,90
от 5 до 10	0,80
от 10 до 15	0,70
от 15 до 20	0,50
от 20 до 30	0,30
от 30 до 40	0,10
от 40 до 90	0,05

БАС-ВТ.1395. Максимально допустимые величины силы света и перекрывающихся световых потоках передних и хвостового аэронавигационных огней

Сила света аэронавигационных огней. за исключением случая, оговоренного в

БАС-BT.1389(b)(3), не должна превышать величин, приведенных в таблице:

Перекрываемые зона	Максимальная сила света, кандел	
перекрываемые зона	света, кандел	
	Зона А	Зона В
Зеленый в пределах двугранного угла Л	10	1
Красный в пределах двугранного угла П	10	1
Зеленый в пределах двугранного угла X	5	1
Красный в пределах двугранного угла X	5	1
Белый задний в пределах двугранного угла Л	5	1
Белый задний в пределах двугранного угла П	5	1

гле:

- (a) Зона A включает все направления в примыкающем двугранном угле, плоскости которого проходят через источник света и пересекают обычную граничную плоскость огней под углами более 10° , но менее 20° ; и
- (b) Зона В включает все направления в примыкающем двугранном угле, которого проходят через источник света и пересекают обычную граничную плоскость огней под углом более 20°.

БАС-ВТ.1397. Требования, предъявляемые к цвету огней

Цветовые характеристики каждого аэронавигационного огня должны иметь следующие рекомендованные Международной комиссией по освещению координаты цвета:

(а) Авиационный красный:

У - не более 0,335; и

Z - не более 0.002.

(b) Авиационный зеленый:

X - не более 0,440-0,320 Y.

X - не более Y-0,170; и

У - не менее 0,390-0,170X.

(с) Авиационный белый:

Х - не менее 0,300 и не более 0,540.

Y - не менее X-0,040; или Y_0 -0.010. зависимости от того, какая величина меньше; и

Y - не более X+0.020 и не более 0.636-0.400X,

где Y_{θ} является координатой Y полного излучателя для рассматриваемой величины X.

БАС-ВТ.1401. Система огней для предотвращения столкновения

- (а) Общие положения. Для предотвращения столкновения БВС-ВТ должен иметь систему огней, которая:
- (1) Состоит из одного или более одобренных предотврашения огней для столкновения. чтобы излучаемый ими так, размещенных световой поток не ухудшал обзор внешнему пилоту и не ухудшал различимость АНО;
- (2) Удовлетворяет требованиям пунктов (b) (f) данного пункта.
- (b) Зона действия. Система должна включать количество огней, способных своим действием с учетом конфигурации и летных характеристик БВС-ВТ охватить его наиболее жизненно важные зоны. Зона действия системы огней должна простираться в каждом направлении в пределах от 30° выше и от 30° ниже горизонтальной плоскости БВС-ВТ, при этом, если их телесные углы в сумме составляют менее 0,5 стерадиана, то допускается наличие зон ограниченной видимости.
- (с) Характеристики проблесковых огней. Устройство системы, TO есть количество источников света, ширина светового потока, частота вращения и другие характеристики должны обеспечивать эффективную частоту мигания в диапазоне от 40 до 100 циклов в минуту. Эффективной частотой мигания огней, предназначенных для предотвращения столкновения БВС-ВТ, является частота, при которой с какого-либо расстояния полностью просматриваются все огни системы, а также каждый сектор светового потока, включая зоны перекрытия светового потока, возникающие при использовании нескольких источников света. В зонах перекрытия частоты мигания превышать 100 циклов в минуту, но не должны быть более 180 циклов в минуту.
- (d) **Цвет.** Каждый огонь для предотвращения столкновения должен быть авиационного красного

цвета и должен удовлетворять требованиям, изложенным в пункте БАС-ВТ.1397.

(е) Сила света. Минимальные величины силы света в любой вертикальной плоскости, измеряемые для красного светофильтра (если он используется), представляются в виде эффективных сил света, которые должны удовлетворять требованиям (f). Эффективная сила света I_C (кд) определяется из уравнения

$$I_{C} = \frac{\int_{t_{1}}^{t_{2}} I(t)dt}{0.2 + (t_{2} - t_{1})},$$

где

 I_{C} - эффективная сила света, кд;

I(t) - сила света вспышки как функция времени;

 t_2 - t_1 - продолжительность вспышки, секунд.

Обычно максимальную величину эффективной силы света получают при выборе таких значений t_2 и t_1 при которых эффективная сила света равна мгновенной силе света при t_2 и t_1 .

(f) Минимальные величины эффективной силы света огня для предотвращения столкновения. Эффективная сила света каждого огня для предотвращения столкновения должна равняться или превышать величины, указанные в таблице:

Угол выше и ниже горизонтальной плоскости, градусов	Эффективная сила света, кандел
от 0 до 5	150
от 5 до 10	90
от 10 до 20	30
от 20 до 30	15

ОБОРУДОВАНИЕ, ОБЕСПЕЧИВАЮЩЕЕ БЕЗОПАСНОСТЬ

БАС-ВТ.1412. Система аварийной посадки

- (a) БАС-ВТ должна включать в себя систему аварийного спасения, которая может работать в следующих режимах:
- (1) режим завершения полета, который реализует функцию немедленного окончания нормального полета, или,
- (2) режим возврата, который осуществляется под контролем внешнего пилота или автоматически, для уменьшения последствий критического отказа и уменьшением ущерба третьим лицам, или,
 - (3) комбинация (а)(1) и (а)(2).
 - (b) На режимах возврата и завершения полета

- должна обеспечиваться при наиболее неблагоприятной комбинации метеорологических условий возможность действий во всей области полетных режимов.
- (с) Если режим возврата или режим завершения полета включаются при достижении определенного сочетания параметров полета, то это должно быть записано в Руководстве по летной эксплуатации.
- (d) Использование взрывчатых веществ для полного разрушения БВС-ВТ в полете не приемлемо.
- (е) Система, реализующая функции режима возврата и завершения полета, должна быть защищена от помех, приводящих к несанкционированным изменениям траектории полета.
- (f) Для максимальной надежности работы систем, обеспечивающих режимы возврата или завершения полета, они могут электропитание, если необходимо, магистральной шины. В случае полного отказа системы первичного электропитания, должен автоматический осуществляться переход электропитание от аккумуляторной батареи.

БАС-ВТ.1413. Остановка двигателя

Для БВС-ВТ, конструктивно способного выполнять режим авторотации, в случае отказа, который вызывает остановку единственного или критического для продолжения полёта двигателя, должны выполняться следующие требования.

- (а) БВС-ВТ должен быть разработан так, чтобы сохранить управляемость и маневренность, при которых он способен достигнуть места аварийной посалки.
- (b) Аварийное электропитание должно быть разработано таким способом, чтобы надежность продолжительность работы соответствовали требованиям пункта БАС-ВТ.1413(а). Продолжительность работы аварийного электропитания должна определяться с учетом времени, необходимого для подлета к месту аварийной посадки и выполнения спуска с максимальной заявленной высоты над уровнем моря, а также времени, затрачиваемого внешним экипажем на распознавание отказа и принятие соответствующих действий, если это требуется.
- (c) Анализ процесса остановки двигателя должен рассматриваться совместно с активацией системы аварийного спасения в соответствии с пунктом БАС-ВТ.1412.

БАС-ВТ.1419. Защита от обледенения

(а) Для получения права выполнения полетов в

условиях обледенения должно быть показано соответствие требованиям данного пункта.

- (b) Необходимо продемонстрировать, что БВС-ВТ в пределах диапазона эксплуатационных высот может безопасно эксплуатироваться в условиях максимального длительного максимального кратковременного обледенения, определяемых в соответствии с Приложением С Норм летной годности, Часть 29. С целью подтверждения в эксплуатационном диапазоне режимов полета БВС-ВТ эффективности работы системы защиты от обледенения различных частей БВС-ВТ должны быть предоставлены результаты проверки эффективности анализа системы зашиты.
- (с) Для определения эффективности работы системы защиты от обледенения и ее элементов необходимо предоставить материалы, подтверждающие выполнение требований (b) и результаты летных испытаний БВС-ВТ или элементов его конструкции в контролируемых условиях естественного обледенения, в объеме, достаточном для оценки соответствия системы обледенения установленным требованиям. Эффективность работы системы защиты обледенения и ее элементов проверяется следующими видами испытаний:
- (1) Лабораторными испытаниями частей БВС-ВТ или их моделей в «сухом» воздухе.
- (2) Летными испытаниями системы защиты от обледенения в целом или ее отдельных частей в «сухом» воздухе.
- (d) Требования данного пункта к защите от обледенения распространяются на конструкцию БВС-ВТ. Требования к защите от обледенения силовой установки представлены в разделе Е данных Норм.
- (е) При наличии условий обледенения необходимо выполнять полеты с включенной защитой от обледенения, как в дневное, так и в ночное время, если отсутствуют ограничения по применению БВС-ВТ в ночное время. В Руководстве по летной эксплуатации БВС-ВТ должно содержаться описание средств защиты от обледенения, а также должны быть приведены сведения, знание которых необходимо для обеспечения в условиях обледенения безопасной эксплуатации БВС-ВТ.

ОБОРУДОВАНИЕ РАЗЛИЧНОГО НАЗНАЧЕНИЯ

БАС-ВТ.1431. Электронное оборудование

(a) При установлении соответствия требованиям пунктов БАС-ВТ.1309(b)(1) и (b)(2) в

- отношении радиотехнического и электронного оборудования, а также способов их установки, необходимо учитывать критические условия окружающей среды.
- (b) Радиотехническое, электронное оборудование, электротехническое органы управления проводка И должны быть сконструированы и установлены таким образом, чтобы работа любого агрегата или системы не оказывала неблагоприятного агрегатов работоспособность воздействия на задействованного одновременно с агрегатами радиоэлектронного или электронного устройства или системы таких устройств. Допускается наличие электромагнитных помех, не приводящих к возникновению особой ситуации, худшей, чем усложнение условий полета, если обеспечивается возможность разнесения по времени работы источника и приемника помех.
- (c) Все элементы бортового оборудования БАС-ВТ должны быть сконструированы и изготовлены в соответствии с требованиями по электромагнитной совместимости, предъявляемыми к ним до установки на БАС-ВТ.

БАС-ВТ.1459. Бортовая система регистрации полетных данных

БАС-ВТ должны быть оборудованы бортовым регистратором.

- (а) Бортовой регистратор должен быть смонтирован таким образом, чтобы:
- (1) Он фиксировал параметры скорости, высоты, курса, ускорений, перегрузок, полученные из источников, отвечающих по точностным характеристикам требованиям Норм летной годности, Часть 27.
- (2) Он питался электроэнергией от шины, обеспечивающей максимальную надежность работы бортового регистратора, не нарушая нормальной работы других приемников электроэнергии, включая аварийные.
- (3) Имелось устройство предполетной проверки регистратора на предмет правильности записи данных на носителе информации.
- (4) Сигналы времени регистрируются относительно единой точки отсчёта для бортовых и наземных систем.
- (b) Контейнер с накопителем информации бортовой системы регистрации данных должен быть установлен в такой зоне аппарата, где возможность повреждения контейнера в результате удара при аварии и в результате пожара была бы минимальной.
- (с) Накопитель информации должен иметь ярко оранжевую или ярко желтую окраску;

- (d) Бортовой регистратор должен обеспечивать регистрацию параметров работы систем БВС-ВТ, а именно:
- (1) Включение и выключение бортового регистратора должно производиться автоматически, а также вручную. Выключение его в полете должно быть исключено.
- (2) Бортовой регистратор должен обеспечивать регистрацию следующих групп параметров:
- служебных параметров (время, номер БВС-ВТ, дата полета);
- параметров, характеризующих движение БВС-ВТ;
- параметров, характеризующих положение органов управления;
- параметров, характеризующих состояние силовой установки;
- параметров, характеризующих состояние систем БВС-ВТ;
- параметров и видеоинформацию целевой нагрузки.
- (3) Накопитель параметрической информации должен быть защищен и способен обеспечивать накопление и сохранение информации в течение всего полета.
- (е) Когда одновременно бортовой диктофон и бортовой самописец требуются действующими эксплуатационными правилами, может быть установлен комбинированный блок, который соответствовал бы всем остальным требованиям соответствующих пунктом Норм летной годности, Часть 27.

БАС-ВТ.1461. Оборудование, содержащее роторы с большой кинетической энергией

- (а) Установленное на БВС-ВТ оборудование, содержащее роторы с большой кинетической энергией, должно удовлетворять требованиям (b), (c) или (d) данного пункта.
- (b) Роторы с большой кинетической энергией, входящие в соответствующее оборудование, должны обладать способностью противостоять разрушениям, возникающим вследствие неисправностей, вибрации и выхода за установленные пределы частот вращения и температур. Кроме того:
- (1) Корпуса роторов должны обладать способностью локализации повреждений, возникающих в результате поломки лопаток ротора с большой кинетической энергией; и
- (2) Устройства для управления оборудованием, его системы и приборы должны быть такими, чтобы эксплуатационные ограничения, влияющие на целостность роторов с большой кинетической энергией, не были превышены при эксплуатации.

- (с) Необходимо продемонстрировать посредством испытаний, что оборудование, содержащее роторы с большой кинетической энергией, может обеспечить локализацию любого разрушения ротора с большой кинетической энергией, которое проявляется при самых больших величинах частот вращения при отказе органов управления частотой вращения.
- (d) Оборудование, содержащее роторы с большой кинетической энергией, должно размещаться в местах, где повреждение ротора не будет неблагоприятно влиять на выполнение продолженного безопасного полета.

БАС-ВТ.1481. Целевая нагрузка

- (а) Целевая нагрузка (ЦН) оборудование, которое несет БВС-ВТ при выполнении назначенного полетного задания. ЦН включает все элементы беспилотного БВС-ВТ, которые обязательны для проведения установлены для выполнения определенных целей полетного задания. Предполагается, Сертификационный базис БАС-ВТ может быть выпущен для нескольких конфигураций ЦН.
 - (b) Компоновка ЦН и ее применение должны:
- (1) Не влиять на безопасный полет и управление БВС-ВТ;
- (2) Показать ЭМС с бортовыми системами БВС-ВТ;
- (3) Удовлетворять мерам безопасности, как предусмотрено в пункте БАС-ВТ.1309 с учётом ожидаемых условий эксплуатации БАС-ВТ.

БАС-ВТ.1492. Аварийное прекращение полета в ручном режиме

Ручная функция безопасного завершения полета БВС-ВТ, разработанная для обычного взлета и посадки на ВПП, должна иметь следующие функции.

- (а) Должны быть предусмотрены принятия решения, в соответствии с которыми в процессе выполнения взлета посадки реализуются возможности прерывания продолжения взлета и посадки, включая уход на второй круг. После точки принятия решения внешний экипаж не должен иметь возможность вмешиваться в автоматическое управление до выполнения заданных условий.
- (b) Автоматическая система должна обеспечивать возможность перехода на ручной режим управления для безопасного завершения полета, включая варианты:
- (1) при отказе на взлете в процессе разбегаостановки БВС-ВТ на ВПП;
 - (2) при отказе на взлете после отрыва-

продолженный или прерванный взлет, в соответствии с точками принятия решения;

- (3) при отказе в процессе захода на посадкууход на второй круг.
- (c) Параметры точек принятия решения и процедуры ухода на второй круг должны быть определены в Руководстве по лётной эксплуатации.

РАЗДЕЛ G – ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ И ИНФОРМАЦИЯ

общие положения

БАС-ВТ.1501. Общие положения

- (а) Должны быть установлены эксплуатационные ограничения, предусмотренные в пунктах БАС-ВТ.1503 БАС-ВТ.1525, а также другие ограничения и информация, необходимые для безопасной эксплуатации.
- (b) Эксплуатационные ограничения и другая информация, необходимые для безопасной эксплуатации, должны быть доведены до сведения внешнего пилота в соответствии с требованиями пунктов БАС-ВТ.1541 БАС-ВТ.1589.

ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

БАС-ВТ.1503. Ограничения по скорости полета. Общие положения

- (а) Должен быть установлен диапазон эксплуатационных скоростей полета.
- (b) Если ограничения по скорости полета зависят от массы, ее распределения, высоты, частоты вращения несущего винта, мощности и других факторов, то необходимо установить ограничения по скорости полета, соответствующие критическим сочетаниям этих факторов.

БАС-ВТ.1505. Непревышаемая скорость полета

- (a) Непревышаемая скорость полета V_{NE} должна быть установлена такой, чтобы ее значение было не более меньшей из величин:
- (1) 0,9 максимальной поступательной скорости, установленной в пункте БАС-ВТ.309;
- (2) 0,9 максимальной скорости, установленной в соответствии с пунктами БАС-ВТ.251 и БАС-ВТ.629; или
- (3) 0,9 максимальной скорости полета, установленной по числу Маха конца наступающей лопасти.
- (b) $V_{\it NE}$ может изменяться в зависимости от высоты, частоты вращения винта, температуры и массы, если:
- (1) Одновременно используются не более двух переменных или не более двух приборов, каждый из которых применяется для измерения

нескольких переменных;

- (2) Для того, чтобы обеспечить при эксплуатации безопасное изменение V_{NE} диапазоны изменения переменных (или показаний приборов, каждый из которых применяется для измерения нескольких переменных, должны быть достаточно велики.
- (c) Для БАС-ВТ, для которых запрошен сертификат на режим авторотации, при отсутствии подачи мощности установившаяся V_{NE} , трактуемая как V_{NE} при неработающих двигателях, может быть определена при скорости меньшей, чем V_{NE} , устанавливаемой в соответствии с (a), если будут удовлетворены следующие условия:
- (1) V_{NE} при неработающих двигателях не менее, чем промежуточная величина скорости между V_{NE} при подаче мощности и скоростью, используемой при выполнении требований пункта БАС-BT.65(b).
 - (2) V_{NE} (при неработающих двигателях):
 - (і) является постоянной величиной;
- (ii) менее, чем V_{NE} при подаче мощности на постоянную величину; или
- (iii) является постоянной скоростью полета для той части диапазона высот, которая указывается в сертификате, и на постоянную величину менее, чем V_{NE} , при подаче мощности для остальной части диапазона высот.

БАС-ВТ.1509. Частота вращения несущего винта

- (а) Максимальная частота вращения несущего винта на режиме авторотации. Для БАС-ВТ, для которых запрошен сертификат на режим авторотации, максимальная частота вращения несущего винта на режиме авторотации не должна превышать 95% от меньшей из двух величин:
- (1) Максимальной расчетной частоты вращения несущего винта, определенной в соответствии с пунктом БАС-ВТ.309(b);
- (2) Максимальной частоты вращения несущего винта, установленной во время испытаний данного типа БВС-ВТ.
- (b) Минимальная частота вращения несущего винта на режиме авторотации. Для БАС-ВТ, для которых запрошен сертификат на режим авторотации, минимальная частота вращения несущего винта на режиме авторотации должна составлять не менее 105% от большей из следующих величин:

- (1) Минимальной частоты вращения, установленной во время испытаний данного типа БВС-ВТ:
- (2) Минимальной частоты вращения, определенной расчетным путем.
- (с) Минимальная частота вращения несущего винта при подаче мощности на несущий винт. Минимальная частота вращения несущего винта при подаче мощности должна быть:
 - (1) Не менее большей из следующих величин:
- (i) минимальной частоты вращения винта, установленной во время испытания данного типа БВС-ВТ;
- (ii) минимальной частоты вращения винтов, определенной расчетным путем;
- (2) Не более величины, определенной в соответствии пунктом БАС-ВТ.33(a)(1) и (b)(1).

БАС-ВТ.1519. Масса и положение центра тяжести

Ограничения массы и положения центра тяжести, определенные в соответствии с пунктами БАС-ВТ.25 и БАС-ВТ.27 соответственно, должны быть отнесены к эксплуатационным ограничениям.

БАС-ВТ.1521. Ограничения, связанные с работой силовой установки

- (а) **Общие положения**. Ограничения режимов работы силовой установки, представленные в данном пункте, не должны превышать соответствующих предельных величин, установленных для двигателя.
- (b) Работа на взлетном режиме. Для случая работы силовой установки на взлетном режиме должны быть установлены следующие ограничения:
- (1) Максимальная частота вращения винта должна быть не более:
- (і) максимальной частоты вращения для данной конструкции винта; или
- (ii) максимальной величины, установленной во время испытаний данного типа БВС-ВТ.
- (2) Давление наддува не более допустимого максимального давления наддува.
- (3) Использование мощности по времени должно быть в пределах ограничений, установленных в (b)(1) и (b)(2).
- (4) Если ограничение по времени, установленное в (b)(3), более 2 мин, то температура головок цилиндров, а также температуры охлаждающей жидкости на выходе или масла не должны превышать максимально

допустимых значений.

73

- (c) **Работа на длительном режиме**. Для работы силовой установки на длительном режиме должны быть установлены следующие ограничения:
- (1) Максимальная частота вращения винта, должна быть не более:
- (i) максимальной частоты вращения для данной конструкции винта; или
- (ii) максимальной величины, установленной во время испытаний данного типа БВС-ВТ.
- (2) Минимальная частота вращения винта, устанавливается в соответствии с требованиями к частоте вращения несущего винта, предусмотренными в пункте БАС-ВТ.1509(с).
- (d) Октановое число или марка топлива. Минимальное октановое число (для поршневых двигателей) должно соответствовать октановому числу, установленному для данного двигателя в пределах ограничений (b) и (c).
- (е) Для БВС-ВТ с электрическими силовыми установками должна быть установлены предельная минимальная и максимальная температуры двигателя, аккумулятора и других компонентов силовой установки, для которых это необходимо.

БАС-ВТ.1525. Виды эксплуатации

Виды эксплуатации, которые разрешены (одобрены) для БВС-ВТ, устанавливаются посредством демонстрации соответствия применимым сертификационным требованиям и установкой соответствующего оборудования.

БАС-ВТ.1527. Максимальная эксплуатационная высота

С учетом ограничений, обусловливаемых характеристиками полета, конструкции, силовой установки, назначения БВС-ВТ и характеристиками оборудования должна быть установлена максимальная высота, до которой разрешается эксплуатировать БВС-ВТ.

БАС-ВТ.1529. Инструкция по поддержанию летной годности

Заявитель должен иметь Инструкции по поддержанию летной годности в соответствии с требованиями Приложения А данных Норм.

МАРКИРОВКА И ТАБЛИЧКИ

БАС-ВТ.1541. Общие положения

- (а) Каждый элемент БАС должен содержать следующее:
- (1) Информацию, маркировки и таблички, указанные в данном подразделе и Разделе I; а также
- (2) Любая дополнительная информация, маркировки требуемые И таблички. для безопасной работы, если БВС-ВТ имеет необычные рабочие конструктивные, характеристики или характеристики ручного управления.
- (b) Каждая маркировка и табличка БАС, предписанная согласно (a):
- (1) Должна быть установлена в заметном месте; а также
- (2) Не должна легко стираться, деформироваться или делаться нечитаемой.
- (c) Информация, таблички маркировки должны быть указаны в Руководстве по летной эксплуатации системы БВС-ВТ.
- (d) Единицы измерения, используемые на табличках, должны быть такими же, как и те единицы измерения, которые приведены в Руководстве по летной эксплуатации системы БВС-ВТ или воспроизводятся для внешнего экипажа БВС-ВТ на СВП.

БАС-ВТ.1557. Прочие маркировки и трафареты

- (а) Грузовые отсеки, места размещения балласта. Каждый грузовой отсек и каждое место размещения балласта должны иметь табличку с указанием всех ограничений по содержимому, включая ограничения по массе, необходимые согласно требованиям по загрузке.
- (b) Топливозаправочные и маслозаправочные горловины. К ним предъявляются следующие требования:
- (1) Топливозаправочные горловины должны иметь маркировку на крышке заправочной горловины или рядом с ней, содержащую информацию о минимально допустимом качестве топлива, марке топлива, ёмкости бака, а для каждого двухтактного двигателя без отдельной масляной системы соотношение топливо/ масло в смеси.
- (2) Маслозаправочные горловины должны иметь табличку на крышке горловины или рядом с ней со следующей информацией:
 - (і) о качестве и о том,
 - (ii) содержит ли масло моющие присадки или

нет.

- (с) Топливные баки. На распределителе и на индикаторе количества топлива должны быть отметки о используемой ёмкости топливного бака в единицах объёма.
- (d) Напряжение в каждой электроустановке постоянного тока должно быть чётко отмечено рядом с разъёмом внешнего источника питания.
- (е) Установленное оборудование, которое может представлять опасность для людей на земле, должно иметь чёткие отметки.

БАС-ВТ.1565. Заметность вращающихся винтов

Каждый винт БВС-ВТ, расположенный так, что при нахождении БВС-ВТ на земле, он может представлять опасность для человека, должен иметь такой ориентир, чтобы при обычных условиях дневного освещения ометаемый им диск был виден с земли.

РУКОВОДСТВО ПО ЛЕТНОЙ ЭКСПЛУАТАЦИИ БАС С БВС-ВТ

БАС-ВТ.1581. Общие положения

- (а) **Представление информации.** С БВС-ВТ должно представляться Руководство по летной эксплуатации БАС, которое должно содержать следующее:
- (1) Информацию, предоставляемую в соответствии с требованиями подраздела БАС-ВТ.1583 БАС-ВТ.1589, включая пояснения, необходимые для правильного применения, и использованные термины, сокращения и обозначения.
- (2) Другую информацию, необходимую для обеспечения безопасной эксплуатации, касающуюся особенностей конструкции, эксплуатационных и пилотажных характеристик.
- (3) Кроме того, информацию, связанную с СВП, линией управления и контроля и связи.
- (4) Дополнительную информацию, обусловленную соответствующими правилами эксплуатации.
- (b) **Одобренная информация.** Для БАС-ВТ, за исключением предназначенных для полётов на высотах не более 10 м над подстилающей поверхностью в пределах прямой видимости:
- (1) За исключением указанного в (b)(2), каждая часть Руководства по летной эксплуатации БВС-ВТ, содержащая информацию, предписанную в подразделах БАС-ВТ.1583-БАС-ВТ.1589, должна быть одобрена, выделена, обозначена и

75

должна четко отличаться от всех не подлежащих одобрению частей Руководства по летной эксплуатации БАС.

- (2) Каждая страница Руководства по летной эксплуатации БАС, содержащая информацию, предписанную настоящим пунктом, должна быть выполнена таким образом, чтобы она не могла стираться, портиться и перепутываться, и чтобы можно было вкладывать ее в Руководство, представляемое Разработчиком, или в папку, или в любой другой прочный переплет.
- (c) Единицы измерения, применяемые в Руководстве по летной эксплуатации БАС, должны соответствовать маркировке на приборах и трафаретах.
- (d) Все эксплуатационные скорости, если не предписано другое, должны быть представлены в Руководстве по летной эксплуатации БАС в виде приборных скоростей.
- (е) Должна быть обеспечена доступность Руководства по летной эксплуатации БАС для внешнего экипажа в течение всего времени выполнения полёта.
- (f) Изменения и поправки. Руководство по летной эксплуатации БАС должно содержать запись обо всех поправках и изменениях.

БАС-ВТ.1583. Эксплуатационные ограничения

- (а) Ограничения по скорости полета и несущему винту. Должна быть представлена информация, необходимая для маркировки на соответствующих указателях или рядом с ними ограничений по скорости полета и несущему винту. На указателях необходимо разъяснить значение каждого ограничения и цветового обозначения.
- (b) **Ограничения, накладываемые на силовую установку.** Должна быть представлена следующая информация:
- (1) Ограничения, установленные в соответствии с пунктом БАС-ВТ.1521.
- (2) При необходимости должны быть даны соответствующие разъяснения ограничений.
- (с) Масса и распределение нагрузки. Должны быть представлены ограничения по массе и положению центра тяжести, установленные в БАС-ВТ.25 и БАС-ВТ.27 соответственно. Также должны быть указания, позволяющие легко соблюдать ограничения по массе и положению центра тяжести в зависимости от условий загрузки.
- (d) **Минимальный внешний экипаж.** Число и минимальные функции специалистов, входящих в состав внешнего экипажа, определенные в пункте БАС-ВТ.1704.

- (е) Виды эксплуатации. Для всех заявленных видов эксплуатации БВС-ВТ, за исключением БВС-ВТ, предназначенных для полётов на высоте не более 10 м над подстилающей поверхностью в пределах прямой видимости, Уполномоченный орган должен согласовать соответствие между БВС-ВТ и применяемым оборудованием.
- (f) **Ограничение высоты полёта.** Должны быть представлены данные о максимальной барометрической и/или иной высоте (например, высоте над подстилающей поверхностью), устанавливаемой в соответствии с пунктом БАС-ВТ.1527, и разъяснение факторов по ее ограничению.
- (g) **Системы.** Любые ограничения на использование систем БАС и оборудования.
- (h) **Ограничения развертывания.** Все ограничения, связанные с развертыванием СВП, командного и контрольного каналов связи, элементов запуска и посадки и любых вспомогательных систем должны быть указаны в Руководстве по летной эксплуатации БАС с БВС-ВТ.
- (i*) Система коммуникации, ограничения каналов управления и связи. В Руководстве по летной эксплуатации БАС с БВС-ВТ должны быть указаны ограничения на функционирование систем коммуникации, командного и контрольного каналов связи, а также эффект от потери связи на ограничения работы и требуемые операционные частоты.
- (j) **Температура наружного воздуха.** Должны быть приведены максимальные и минимальные предельные величины температуры наружного воздуха.

БАС-ВТ.1585. Правила эксплуатации

- (а) Разделы Руководства летной эксплуатации, содержащие эксплуатационные информацию, процедуры, должны давать касающуюся любых действий в нормальной и аварийной обстановке, любую другую информацию, необходимую для безопасной эксплуатации, в том числе процедуры взлета и соответствующие посадки скорости. Руководство по летной эксплуатации должно также содержать следующую информацию:
- (1) Вид взлетной поверхности, проверенной при испытаниях, и соответствующие ей скорости набора высоты;
- (2) Вид посадочной поверхности, проверенной при испытаниях, и соответствующие скорости захода на посадку и планирования.
- (3) Максимальные значения встречного ветра для взлета и посадки, осуществления полета и

получения при встречном ветре информации, касающейся параметров эксплуатации;

- (4) Рекомендованная скорость для полета в турбулентном воздухе. Скорость должна быть выбрана так, чтобы порывы ветра не вызывали конструктивных повреждений БВС-ВТ и не приводили к потере управления;
- (5) Возможность, повторного запуска двигателя в полете на разных высотах;
- (b) В дополнение к (a) для БВС-ВТ, для которых запрашивается сертификат на режим авторотации, должны быть представлены рекомендации по выбору скорости и конфигурации БВС-ВТ при планировании с отказавшим двигателем в соответствии с пунктом БАС-ВТ.71 и выполнению вынужденной посадки.
- (c) Для БВС-ВТ, для которых в соответствии с пунктом БАС-ВТ.1505(c) устанавливается V_{NE} при неработающем двигателе, должна быть представлена информация, разъясняющая величину V_{NE} при неработающем двигателе и в случае отказа двигателя возможные действия по снижению скорости полета до величины, не превышающей V_{NE} при неработающем двигателе.
- (d) Для каждого беспилотного БВС-ВТ, отвечающего требованиям пункта БАС-ВТ.1353(g), должна быть представлена информация о действиях по отключению батареи от источника зарядки.
- (е) Если величина невырабатываемого остатка топлива в баке превышает 5% емкости бака или 3,8 л (в зависимости от того, какая величина больше), то должна быть представлена информация, из которой видно, что если указатель топливомера в горизонтальном полете показывает «нуль», то по условиям безопасности остаток топлива в баке не может быть использован в полете.
 - (f) Информация о запасе топлива или энергии.
- (1) Для БВС-ВТ с двигателем внутреннего сгорания должна быть представлена информация об общем количестве топлива в баке, которое может быть использовано.
- (2) Для БВС-ВТ с электрической силовой установкой, должна быть представлена информация о доступном для использования в полёте запасе энергии.
- (g) Для минимальной вертикальной скорости снижения и наивыгоднейшего угла планирования, установленного в соответствии с требованиями пункта БАС-ВТ.71, должны быть представлены величины скоростей полета и соответствующие частоты вращения несущего винта.

БАС-ВТ.1587. Сведения о летных данных

- (а) Вместе с БВС-ВТ должна быть представлена установленная в соответствии с пунктами БАС-ВТ.51 БАС-ВТ.79 и БАС-ВТ.143(с) следующая информация:
- (1) Информация, достаточная для определения зоны опасных сочетаний «высота-скорость».
 - (2) Информация относительно:
- (i) статических потолков и установившихся вертикальных скоростей набора высоты и снижения в зависимости от различных влияющих факторов, таких, как скорость, температура воздуха и высота;
- (ii) максимальной безопасной скорости ветра при эксплуатации вблизи земли. Если существуют такие комбинации массы, высоты и температуры, представленные в летных данных, при которых БВС-ВТ не может осуществить безопасный взлет или посадку с указанной максимальной величиной скорости ветра, то эти комбинации эксплуатационных режимов, их диапазоны и соответствующие безопасные значения скорости ветра должны быть представлены в Руководстве по летной эксплуатации;
- (iii) для БВС-ВТ с поршневыми двигателями максимальной температуры воздуха, при которой было показано соответствие с требованиями к охлаждению, указанными в пунктах БАС-ВТ.1041 БАС-ВТ.1045;
- (iv) дистанции планирования на авторотации при скоростях и условиях, соответствующих минимальной вертикальной скорости снижения и наивыгоднейшему углу планирования, определяемых в зависимости от высоты полета в соответствии с пунктом БАС-ВТ.71.
- (b) Руководство по летной эксплуатации БВС-ВТ должно содержать в разделе, посвященном информации о летных данных, информацию, относящуюся к взлетной массе и высотам, указанным в пункте БАС-ВТ.51;
- (1) любую информацию, касающуюся методики выполнения взлета, включая тип взлетной поверхности, проверенный в испытаниях, и соответствующие значения скоростей набора высоты;
- (2) любую информацию, касающуюся методики выполнения посадки, включая тип посадочной поверхности, проверенный в испытаниях, и соответствующие значения скоростей полета при заходе на посадку и планировании.

БАС-ВТ.1589. Информация о загрузке

Для того, чтобы центр тяжести БВС-ВТ оставался в пределах, установленных в

77

НЛГ БАС-ВТ

соответствии с пунктом БАС-ВТ.23, для каждого возможного варианта загрузки, который может повлечь перемещение центра тяжести за предельно допустимые значения, установленные в пункте БАС-ВТ.27, должны быть указания по загрузке во всем диапазоне от максимального до минимального значений масс, определенных в

БАС-ВТ.1591. Информация канала связи

соответствии с пунктом БАС-ВТ.25.

Информация канала связи, предоставленная в Руководстве по летной эксплуатации БАС с БВС-ВТ, должна соответствовать требованиям пунктов БАС-ВТ.1611, БАС-ВТ.1613(а) и БАС-ВТ.1615 (с).

РАЗДЕЛ Н – КАНАЛ КОНТРОЛЯ И УПРАВЛЕНИЯ

БАС-ВТ.1601. Общие положения

- (а) Система связи БАС должна состоять из следующих подсистем:
 - (1) Подсистема связи контроля и управления.
- (2) Подсистема связи с управлением воздушным движением (УВД).
 - (3) Подсистема связи канала целевой нагрузки.
- (b) Настоящий раздел рассматривает только подсистему связи контроля и управления. Канал связи целевой нагрузки регулируется эксплуатационной документацией.
- (c) БАС должна включать в себя канал контроля и управления для управления БВС-ВТ со следующими функциями:
- (1) Передача команд внешнего экипажа от СВП к БВС-ВТ (передача с земли на борт).
- (2) Передача данных о состоянии БВС-ВТ на СВП (передача с борта на землю). Данные о состоянии должны включать в себя информацию, отображаемую на мониторах СВП БАС в соответствии с разделом I настоящих Норм.
- (3) Если Уполномоченным органом не согласован альтернативный вариант, предложенный Заявителем, для организации линии контроля и управления БВС-ВТ должны быть использованы диапазоны рабочих частот, выделенные решением Государственной Комиссии по радиочастотам (ГКРЧ) или другим уполномоченным на территории, где планируется эксплуатация БАС-ВТ, органом.

БАС-ВТ.1603. Архитектура канала для передачи команд управления

Архитектура канала управления должна гарантировать, что никакой единичный отказ в работе аппаратуры канала не сможет привести к возникновению опасного или более серьезного события (состояния).

БАС-ВТ.1605. Электромагнитные помехи и электромагнитная совместимость

- (а) Линия контроля и управления должна быть защищена таким образом, чтобы устранить электромагнитную уязвимость, обеспечивая заданное соотношение уровней сигнала контроля и управления/помеха.
 - (b) Электронное оборудование

И

- электропроводка должны быть установлены таким образом, чтобы его функционирование не оказывало отрицательного влияния на одновременно работающее любое другое радио-или электронное устройство или систему устройств.
 - (с) Линия контроля и управления:
- (1) являясь отдельной подсистемой, должна соответствовать требованиям БАС-ВТ.1309.
- (2) должна быть спроектирована таким образом, чтобы обеспечивать защиту от электростатической опасности, ударов молний и других эффектов.

БАС-ВТ.1607. Рабочие характеристики и мониторинг канала контроля и управления

- (а) Эффективный максимальный диапазон параметров работоспособности канала контроля и управления должен быть указан в Руководстве по летной эксплуатации БАС, включая диапазон высот, как определено в БАС-ВТ.1527, а также условия эффективной передачи данных с земли на борт и передачи с борта на землю.
- (b) Эффективный максимальный диапазон работоспособности канала контроля и управления может включать запас по условиям безопасности. По запросу внешнего экипажа БАС на СВП для оценки эксплуатационной готовности должен воспроизводиться диапазон работоспособности канала передачи данных с земли на борт и с борта на землю. По запросу внешнего экипажа БАС-ВТ показатели эксплуатационной готовности должны воспроизводиться в соответствующей позиции на дисплее СВП.
- (c) Для канала контроля и управления целостность передач с земли на борт и с борта на землю должна непрерывно контролироваться с частотой обновления, совместимой с условиями безопасной эксплуатации.
- (d) За исключением БАС-ВТ, предназначенных для эксплуатации в пределах прямой видимости, сигнализация, относящаяся к ограничению дальности связи, отражается на мониторе внешнего пилота на СВП по запросу внешнего экипажа БАС-ВТ, или же автоматически в случае вероятного сбоя канала контроля и управления.
- (е) Информация о взаимной «видимости» должна воспроизводиться на СВП вместе с предупреждающими сигналами, предоставляемыми внешнему экипажу БАС, для предотвращения полной потери канала контроля и

79

управления.

БАС-ВТ.1611. Скрытое запаздывание в канале контроля и управления

- (а) Величины запаздывания по времени в канале контроля и управления (а именно, «скрытое запаздывание») должны быть указаны в Руководстве по летной эксплуатации БАС в зависимости от всех соответствующих условий.
- (b) Скрытое запаздывание для канала контроля и управления не должно приводить к возникновению опасных состояний с учетом всех вероятных условий окружающей среды.

БАС-ВТ.1613. Действия в случае отказа канала контроля и управления

- (а) В случае вероятного отказа канала контроля и управления в Руководстве по летной эксплуатации БАС должны быть определены процедуры безопасного завершения полета, принимая во внимание требования БАС-ВТ.1412.
- (b) Действия при отказе канала контроля и управления должны включать в себя автономный процесс попыток повторного восстановления связи с тем, чтобы восстановить канал для контроля и управления в течение достаточно короткого промежутка времени.
- (c) Должно быть предусмотрено предупреждение для внешнего экипажа БВС-ВТ в форме ясного и четкого звукового и визуального сигнала в случае полного отказа канала контроля и управления.

БАС-ВТ.1615. Экранирование антенны канала контроля и управления

- (а) Для всех пространственных положений и ориентаций БВС-ВТ относительно источника сигналов управления в рамках области расчетных рабочих режимов полета антенна БВС-ВТ должна поддерживать достаточный уровень восприятия сигнала управления, необходимый для безопасной эксплуатации.
- (b) Степень экранирования должна быть указана в Руководстве по летной эксплуатации.
- (с) Предупреждающие сигналы должны предоставляться внешнему экипажу БВС-ВТ в случае приближения к пространственным положениям экранирования для того, чтобы предотвратить возможность полного отказа канала контроля и управления.

БАС-ВТ.1617. Переключение линий передачи данных контроля и управления

Операция, которая заключается в передаче функций управления и контроля БВС-ВТ от одного канала другому в пределах одной СВП БАС (переключение), должна соответствовать следующим требованиям:

- (а) Переключение канала передачи данных контроля и управления не должно приводить к возникновению опасной ситуации.
- (b) БВС-ВТ должен находиться под непрерывным надежным управлением во время переключения линий передачи данных контроля и управления в пределах одной СВП. В противном случае необходимо продемонстрировать, что никакое надежное управление не будет приводить к возникновению опасных ситуаций.

БАС-ВТ.1618. Передача речевой информации

При наличии на БАС-ВТ приемопередатчика МВ диапазона (117,975-137 МГц) линия контроля и управления должна обеспечить передачу речевой информации по линии «вверх» (внешний пилот-диспетчер) и «вниз» (диспетчер-внешний пилот).

РАЗДЕЛ І – НАЗЕМНАЯ СТАНЦИЯ УПРАВЛЕНИЯ

80

общие положения

БАС-ВТ.1701. Общие положения

Станция внешнего пилота (СВП) — составная часть беспилотной авиационной системы, представляющая собой устройство или комплекс оборудования, с помощью которого обеспечивается дистанционное управление

- БВС-ВТ и связь с органом обслуживания воздушного движения (управления полетами) должна соответствовать следующим требованиям:
- (а) Конструктивное исполнение СВП для безопасной эксплуатации БВС-ВТ должно упрощать внешнему экипажу управление и контроль.
- (b) Если СВП установлен на передвижной платформе, то может потребоваться разработка специальных технических условий.
- (c) Если СВП представляет собой обособленный модуль, стационарный или передвижной:
- (1) характеристики СВП должны быть отработаны, их качество подтверждено в заявленных погодных условиях эксплуатации БВС-ВТ. Данные отработки должны учитывать заявленный диапазон эксплуатационных и не эксплуатационных условий (хранение, транспортировка и т.д.) в соответствующей окружающей обстановке.
- (2) При анализе безопасности необходимо учесть, чтобы все выявленные риски в работе СВП были уменьшены до уровня, совместимого с безопасной работой всей системы.
- (3) СВП должна быть разработана таким образом, чтобы уменьшить риски для внешнего экипажа, лиц, выполняющих техобслуживание, а также третьих лиц до приемлемого уровня. Аналогично должен быть уменьшен риск материальных потерь или повреждений.
- (d) Если СВП реализована в виде портативного устройства (пульт дистанционного управления, ноутбук и т.п.), в ходе испытаний должны быть выработаны и помещены в Руководство по лётной эксплуатации указания по условиям безопасного размещения портативной СВП, обеспечивающей надлежащие условия для внешнего экипажа, выполняющего полёт.

БАС-ВТ.1702. Инфраструктура СВП

Физические параметры (например, размер, температура, электропитание, заземление, максимальная мощность), определяющие условия безопасности полета и инфраструктуру, подходящую для СВП, должны быть отражены в Руководстве по летной эксплуатации БАС.

БАС-ВТ.1703. Рабочее место внешнего экипажа БАС

- (а) СВП и его оборудование должно позволять каждому члену внешнего экипажа БАС выполнять свои обязанности на рабочем месте, без перенапряжения или усталости.
- (b) Условия работы внешнего экипажа БАС (температура, влажность, вибрация, шум, теплоотдача) не должны препятствовать безопасному выполнению полетов.

БАС-ВТ.1704. Минимальное количество членов внешнего экипажа БАС

Минимальное количество членов внешнего экипажа БАС должно быть определено в эксплуатационной документации таким образом, чтобы их было достаточно для безопасного проведения полета, принимая во внимание следующее:

- (а) Индивидуальный объем работы каждого члена внешнего экипажа БАС должен предусматривать решение следующих задач:
- (1) управление и контроль всех основных элементов БВС-ВТ;
 - (2) навигация;
 - (3) контроль курса полета;
 - (4) связь (системы связи);
- (5) согласование своих действий с органом обслуживания воздушного движения (управления полетами) и экипажами других воздушных судов;
- (6) принятие решений, включая использование возможностей внешнего экипажа.
- (b) Удобство и легкость работы с необходимыми средствами управления.

БАС-ВТ.1705. Освещение рабочего места внешнего экипажа БАС

- (a) Освещение места работы внешнего экипажа БАС должно:
 - (1) Обеспечивать заметность, точную

идентификацию и легкость восприятия информации каждого индикатора, дисплея и других необходимых для выполнения своих функциональных обязанностей элементов контроля;

- (2) Размещаться так, чтобы, органы зрения пилотирующего внешнего пилота БВС-ВТ были защищены от попадания прямых лучей света и лучей, отраженных от любой поверхности.
- (b) В случае, если конструкцией БАС-ВТ не предусмотрено стационарное место размещения внешнего экипажа, Руководство по лётной эксплуатации должно содержать указания по выбору места размещения внешнего экипажа силами эксплуатанта. Перед началом каждого полёта приемлемость места размещения должна быть подтверждена внешним пилотом.

БАС-ВТ.1707. Система связи

- (а) Для СВП, имеющих несколько рабочих мест членов внешнего экипажа, одновременно выполняющих свои обязанности, необходимо обеспечить возможность без труда вести переговоры в реальных условиях. Если возможны условия, при которых будет затруднено ведение переговоров между членами внешнего экипажа, конструкция СВП должна включать в себя внутреннее переговорное устройство (ВПУ).
- (b) Если установленное на СВП ВПУ включает в себя переключатель «прием-передача», то переключатель должен быть разработан таким образом, чтобы он возвращался в положение «прием» из положения «передача» после передачи речевой информации, и при этом имел индикацию о нахождении переключателя в положении «прием».
- (с) Если для ведения переговоров используется гарнитура (наушники и микрофон), должна быть предусмотрена возможность получения членами внутреннего экипажа всех звуковых сигналов, оповещений и внешних команд в фактических шумовых условиях СВП.
 - (d) СВП должна быть оборудована:
- (1) сертифицированной радиостанцией MB диапазона (117,975-137 МГц), с возможностью оперативного переключения не менее 4 каналов, вид модуляции-AM, шаг сетки 25 и 8,33 кГц, мощность 5 Вт, антенна всенаправленная.
- (2) В СВП должно быть установлено оконечное устройство громкоговорящей связи и оборудование канала связи с ближайшим органом обслуживания воздушного движения (управления полетами).

БАС-ВТ.1709. Регистратор голоса (речевое

записывающее устройство)

81

- (а) СВП БАС должна быть оборудован регистратором голоса, который должен быть установлен таким образом, чтобы он мог записать:
- (1) Голосовые команды, переданные от или полученные на СВП БАС по внешней связи.
- (2) Голосовые переговоры членов внешнего экипажа БАС, использующих внутреннюю связь СВП
- (3) Голосовые переговоры или звуковые сигналы на СВП.
- (f) Указанные в (a)(3) требования регистрации информации необходимо выполнять с помощью микрофона, установленного в области, в которой наилучшим образом обеспечивается запись переговоров между членами внешнего экипажа БАС и переговоров с другим персоналом, находящимся на СВП. Микрофон должен быть установлен и, если необходимо, предусилители и фильтры должны быть настроены таким образом, чтобы в случае необходимости разборчивость зарегистрированных переговоров была столь же высока, как и реальная речь, при всех шумовых эффектах на СВП.
- (g) Каждый регистратор голоса СВП должен быть установлен таким образом, чтобы:
- (1) Он получал от шины СВП электроэнергию, обеспечивающую его максимально надежную эксплуатацию речевого записывающего устройства.
- (2) Для оценки правильности его работы должен применяться звуковой или визуальный метод предполетной подготовки.
- (h) Эталонный сигнал всемирного времени должен записываться на специальном треке регистратора голоса.

БАС-ВТ.1711. Регистраторы данных СВП

- СВП БАС должна быть оборудована регистратором информации СВП, согласованным с Уполномоченным органом, который должен:
- (а) Непрерывно записывать все данные, передаваемые через каналы управления и передачи данных, а также данные о положении БВС-ВТ относительно СВП.
- (b) Емкость запоминающего устройства регистратора данных должна быть способна запоминать информацию за три последних летных часа или информацию за время, равное максимальной продолжительности полета, для которого требуется сертификация, в зависимости от того, что меньше.
- (с) Базовое время регистратора информации СВП, должно быть синхронизировано и помечено:
 - (1) По каналу управления и контроля «борт-

земля» с БВС-ВТ;

- (2) По каналу управления и контроля «земляборт» с СВП;
- (3) По каналу связи с органом управления воздушным движением;
- (d) Базовое время, используемое регистраторами СВП БАС, должно позволять осуществлять последующую синхронизацию всех зарегистрированных данных или информации с точностью более чем половина секунды между любым из регистраторов;
- (e) Для послеполетной обработки на СВП должна быть реализована функция считывания информации с регистратора данных.

БАС-ВТ.1717. Электрическое оборудование СВП

- (а) Любое электрическое оборудование на СВП БАС, за исключением случаев, когда СВП представляет собой портативный модуль, должно:
- (1) Иметь такую конструкцию, чтобы само оборудование и его воздействие на другие части СВП не представляли опасности.
- (2) Сконструировано таким образом, чтобы опасность поражения электрическим током при соблюдении требований руководства по эксплуатации была исключена.
- (b) Люди, находящиеся в СВП, должны быть защищены от электростатического воздействия, удара молнии.
- (c) При проектировании СВП необходимо учитывать общее количество тепла, выделяемого электрическим оборудованием.

БАС-ВТ.1719. Электропитание СВП БАС

- (а) Электропитание СВП БАС должно быть разработано таким образом, чтобы его работа в нормальных условиях, а также при условии сбоя не привела к аварийному состоянию.
- (b) Минимальное электропитание СВП БАС, соответствующее требованиям пункта (a), должно быть указано в Руководстве по Летной эксплуатации БАС.

БАС-ВТ.1720. Автоматическое планирование полета

Вычисления, выполненные при автоматическом планировании полета БВС-ВТ, предназначенного для полёта за пределами прямой видимости, не должны приводить к аварийному состоянию.

ОТОБРАЖЕНИЕ ДАННЫХ НА СВП БАС

БАС-ВТ.1721. Расположение и видимость приборов

- (а) В соответствии с требованием или в зависимости от выбора внешнего экипажа БАС, данные каждого полета, навигации, силовой установки и положения БВС-ВТ должны быть четко отображены и видны внешнему экипажу.
- (b) Для каждого БВС-ВТ с несколькими двигателями идентичные данные силовой установки должны быть доступны и расположены таким образом, чтобы не допустить путаницы в отношении того, к какому двигателю они относятся.
- (с) Данные, необходимые для безопасной эксплуатации систем, должны быть соответствующим образом сгруппированы и расположены в поле зрения членов внешнего экипажа БАС.
- (d) Если БВС-ВТ оборудован индикатором визуального контроля, то отображение, указывающее на сбой в работе оборудования, должно быть видно при любой освещенности.
- (e) Все дисплеи, индикаторы и предупреждения должны быть видны и полностью считываемы при любой освещенности СВП БАС.
- (f) Если в процессе испытаний установлено, отображения какой-либо информации недостаточно, его автоматическое появление должно сопровождаться звуковым оповещением.

БАС-ВТ.1722. Частичное отображение информации

Если отдельные параметры не отображаются постоянно, то это не должно влиять на безопасность полета БВС-ВТ. Это должно быть подтверждено лётными испытаниями.

БАС-ВТ.1723. Полетные и навигационные данные

- (а) В пункте описаны минимально необходимые полетные и навигационные данные, которые должны постоянно отображаться на СВП БАС-ВТ со скоростью обновления соответствующей безопасной работе:
 - (1) Воздушная скорость;
- (2) Барометрическая высота и связанные с ней установки высотомера;
- (3) Данные о выдерживании курса и/или маршрута БВС-ВТ;
- (4) Положение БВС-ВТ должно непрерывно отображаться на карте в масштабе, выбираемом внешним экипажем БАС на уровне детализации,

гарантирующем безопасный полет;

- (5) Если в соответствии с БАС-ВТ.1329 задействован полуавтоматический способ управления полетом, то данные управляемого полета или навигационные параметры, передаваемые БВС-ВТ, должны отображаться на СВП;
 - (6) состояние навигационных систем.
- (b) В следующих пунктах с учетом требований БАС-ВТ.1722, представлен минимально необходимый набор полетных и навигационных данных для отображения на мониторе СВП БАС со скоростью обновления, соответствующей безопасной работе, которые могут быть выбраны или получены при запросе внешнего экипажа БАС:
- (1) ограничения воздушной скорости, определенные в БАС-ВТ.1505 БАС-ВТ.1513;
 - (2) угол бокового скольжения;
 - (3) температура окружающей среды;
 - (4) устройство предупреждения о скорости V_{NE} ;
 - (5) пространственное положение БВС-ВТ:
- (i) положение БВС-ВТ относительно зоны прямой видимости передатчика/приемника канала связи должно также отображаться в единицах дальности и направления;
- (ii) отклонение между запланированной траекторией и фактической траекторией полета БВС-ВТ;
 - (6) положение БВС-ВТ по крену и тангажу;
 - (7) вертикальная скорость;
 - (8) время (часы, минуты, секунды).

БАС-ВТ.1724. Данные системы обнаружения и предупреждения столкновений в воздухе

[Зарезервировано]

БАС-ВТ.1725. Данные силовой установки

- (а) Далее приведен минимально необходимый набор данных силовой установки, который должен постоянно отображаться на мониторе СВП БАС со скоростью обновления, соответствующей безопасной работе.
- (1) Для БВС-ВТ с двигателем внутреннего сгорания:
 - (і) количество оставшегося топлива;
- (ii) число оборотов в минуту для каждого двигателя
- (iii) температура той части силовой установки, по которой установлено ограничение.
- (2) Для БВС-ВТ с электрической силовой установкой:
- (i) Температура каждого электрического двигателя;
 - (іі) Температура аккумуляторной батареи;

- (iii) напряжение аккумуляторной батареи;
- (iv) потребляемый тока.

83

- (b) В данном подпункте с учетом требований БАС-ВТ.1722 приведен минимально необходимый набор данных о силовой установке, который может быть выбран или получен при запросе внешнего экипажа БАС для отображения на мониторе СВП со скоростью обновления данных, соответствующей безопасной работе:
- (1) Давление масла для каждого двигателя, за исключением двигателей без устройства для точечной (местной) смазки;
- (2) Температуру масла для каждого двигателя, за исключением двигателей без устройства для точечной (местной) смазки;
- (3) Количество масла в масляном баке, который отвечает требованиям БАС-ВТ.1337(d), за исключением двигателя без устройства для точечной (местной) смазки.
- (4) Температура воздуха индукционной системы для каждого двигателя, оснащенной подогревателем и имеющей ограничения температуры воздуха индукционной системы, которые могут быть превышены при прогреве.
- (5) Температура головки цилиндра для каждого двигателя воздушного охлаждения со створками капота;
- (6) Давление топлива для двигателей с насосной подачей топлива.
- (7) Температура охлаждающей жидкости для каждого двигателя жидкостного охлаждения.
 - (8) Расход топлива.
- (с) Конструкция СВП должна предусматривать возможность визуального и звукового оповещения внешнего экипажа БАС о приближении к безопасным пределам превышении или безопасного диапазона параметров силовой установки, перечисленных в (a) и (b). Если система не способна оповестить внешний экипаж БАС о превышении безопасного диапазона, то перечисленные данные должны отображаться постоянно.

БАС-ВТ.1726. Отображение данных оборудования, требуемых при эксплуатации

Состояние оборудования и его данные, требуемые при эксплуатации, должны отображаться на СВП БАС.

БАС-ВТ.1727. Электронное отображение данных

- (а) Системы электронного отображения данных должны:
- (1) Удовлетворять классификации требованиям видимости, установленным в

БАС-ВТ.1721;

- (2) При отображении электронных табло информация на дисплеях должна быть легко различима при всех видах освещения, которые возможны на автоматизированном рабочем месте, с учетом прогнозируемого уровня яркости дисплея к концу эксплуатационного срока. Специальные эксплуатационного ограничения ДЛЯ системы дисплеев должны быть рассмотрены в требованиям непрерывной инструкции эксплуатации в соответствии с БАС-ВТ.1529;
- (3) Включать в себя легко понятные для внешнего экипажа БАС сенсорные сигналы;
- (4) Отображать указатели визуальных сигналов и окраску отображенных данных на дисплее в соответствии с требованиями БАС-ВТ.1831 БАС-ВТ.1843, или для каждого параметра в соответствии с требованиями Норм визуальную индикацию, оповещающую внешний экипаж о неправильных рабочих параметрах или о приближении к установленным ограничениям.
- (b) Системы электронной индикации, включая компоненты установки, должны разрабатываться с учетом других систем БВС-ВТ, но таким образом, чтобы внешнему экипажу на его рабочем месте было достаточно одного электронного устройства отображения информации (дисплея) для продолжительного безопасного полета или посадки в случае единичного или. возможно, множественных отказов электронных устройств отображения информации.

БАС-ВТ.1728. Отображение данных канала связи, предупреждения и индикаторы

Отображение данных канала связи, предупреждения и индикаторы должны соответствовать требованиям, установленным в БАС-ВТ.1607.

БАС-ВТ.1729. Данные о количестве топлива и масла

- (а) В течение всего полета указатели количества и расхода (если измеряется такой параметр) топлива должны показывать внешнему экипажу БАС скорость потребления топлива и количество топлива, оставшегося в каждом баке. Для точной индикации каждый указатель количества топлива должен иметь удобную шкалу делений. К тому же:
- (1) Баки с взаимосвязанными выпускными отверстиями и зазорами можно рассматривать как один бак и не требуется отображение отдельных данных;
 - (2) Для вспомогательного бака, который

используется только для перекачки топлива в другие баки, не требуются данные о количестве топлива, если относительный размер бака, скорость перекачки топлива и правила технической эксплуатации достаточны, чтобы:

- (і) Предотвратить разлив;
- (іі) Дать внешнему экипажу предупреждение, если при перекачке случается неисправность.
- (b) Данные о количестве масла. Если у БВС-ВТ имеется система подачи масла или резервная масляная система, то во время полета указатели количества масла должны показывать на СВП БАС количество масла в каждом баке.

БАС-ВТ.1730. Данные системы автоматического взлета или системы автоматической посалки

Для БВС-ВТ, оборудованного системой автоматического взлета или системой автоматической посадки, или обеими системами, в течение соответствующих фаз полета для внешнего экипажа БАС должны непрерывно выводиться на экран следующие данные:

- (а) Траектория полета БВС-ВТ;
- (b) Отклонение фактической траектории полета БВС-ВТ от запланированной траектории.

ОРГАНЫ УПРАВЛЕНИЯ

БАС-ВТ.1731. Общие положения

- (а) Каждый орган управления на СВП должен быть расположен и обозначен (если его функция неочевидна) таким образом, чтобы была обеспечена удобная с ним работа и не возникали ситуации, приводящие к ошибочным действиям членов внешнего экипажа и случайному срабатыванию.
- (b) Органы управления быть должны расположены и устроены таким образом, чтобы внешний экипаж БАС. находяшийся автоматизированном рабочем месте. мог полноценное свободное осуществлять управление каждым органом управления без каких-либо помех, связанных с одеждой членов внешнего экипажа или конструкцией СВП.
- (c) Органы системы управления на СВП должны действовать легко, плавно и в соответствии с их функциями.
- (d) Система управления должна быть разработана таким образом, чтобы органы управления, обеспечивающие длительный безопасный полет и посадку, в нормальных, нештатных и аварийных ситуациях оставались доступными для внешнего экипажа БАС в течение

Нормы лётной годности

85

всего времени полёта.

БАС-ВТ.1732. Органы управления в критических ситуациях

- (а) Конструкция, местоположение и доступность органов управления в критических ситуациях, требующих непосредственного действия внешнего экипажа БАС, должны соответствовать быстрой и точной реакции внешнего экипажа БАС во время его работы в аварийном режиме.
- (b) В случае, когда интерфейс системы, взаимодействующий с внешним экипажем, основан на архитектуре выпадающего меню:
- (1) Для быстрого реагирования внешнего экипажа БАС доступ к органам управления должен находиться на первом уровне выпадающего меню.
- (2) Если это условие не выполняется, то органами управления в критических ситуациях на СВП должны являться специальные кнопки или рукоятки.
- (с) Органы управления должны быть разработаны таким образом, чтобы в критических ситуациях избежать ситуации, приводящей к путанице и случайному срабатыванию.

БАС-ВТ.1733. Общепринятые органы управления и индикаторы

- (а) В случае, если используются общепринятые органы управления и отображения приборов, их форма, местоположение и расположение должны обеспечивать безопасную работу.
- (b) Для каждого общепринятого прибора на СВП БАС:
- (1) Если маркировка расположена на покровном стекле индикатора, должны быть средства поддержания правильного расположения покровного стекла относительно лицевой панели индикатора.
- (2) Каждая дуга и линия должны быть достаточной толщины и размещены в месте, откуда они четко видны внешнему экипажу БАС,
- (3) Все сопутствующие индикаторы должны быть калиброваны в одинаковых единицах.

БАС-ВТ.1735. Перемещение и форма органов управления

Если на СВП БАС установлены органы управления, подобные общепринятым органам управления полетом, которые применяются в пилотируемых ВС, или их имитаторы, то они должны быть выполнены таким образом, чтобы результаты воздействия на них были интуитивно

понятны внешнему экипажу.

БАС-ВТ.1741. Органы управления полетом в СВП БАС

- (а) Органами управления полетом на СВП БАС являются органы управления, используемые внешним экипажем БАС для управления БВС-ВТ при полуавтоматическом способе управления, указанном в БАС-ВТ.1329.
- (b) Конструкция органов управления полетом на СВП БАС должна позволять внешнему экипажу БАС быстро и легко изменять следующие параметры полета БВС-ВТ в соответствии с алгоритмами автоматизированного полёта:
 - (1) курс или маршрут полета,
 - (2) высоту,
 - (3) воздушную скорость.

БАС-ВТ.1742. Органы управления системой прекращения полета

Для БВС-ВТ, оборудованного системой прекращения полета:

- (a) Органы управления в соответствии с БАС-ВТ.1732 являются органами управления в аварийных ситуациях.
- (b) Данные органы управления должны быть устроены и обозначены таким образом, чтобы они были легкодоступны. Эти органы управления должны быть разработаны таким образом, чтобы избежать ситуации, приводящей к путанице и случайному срабатыванию.

БАС-ВТ.1743. Органы управления подачей топлива

- (а) Должны иметься средства, позволяющие внешнему экипажу БАС быстро отключать в полете подачу топлива к каждому двигателю внутреннего сгорания отдельно.
 - (b) Кроме того, должны быть средства для:
- (1) Предотвращения случайного срабатывания каждого перекрывного устройства.
- (2) Возможности внешнему экипажу БАС повторно открывать каждое перекрывное устройство после того, как оно было закрыто.
- (c) Если на БВС-ВТ установлен кран переключения подачи топлива:
- (1) Для установки переключателя в положение отключения должно быть выполнено отдельное и четко определенное действие;
- (2) Кран переключения подачи топлива должен быть выполнен таким образом, чтобы был невозможен проход через положение отключения при смене одного бака на другой.

86

БАС-ВТ.1745. Управление аварийным сливом топлива

- (а) Если имеется кран аварийного слива топлива, он должен быть выполнен так, чтобы внешний экипаж БАС мог закрыть его в любой момент во время аварийного слива топлива.
- (b) Орган управления аварийным сливом топлива должен быть выполнен так, чтобы предотвратить случайное срабатывание.

БАС-ВТ.1747. Управление устройствами забора воздуха

Любое дополнительное воздухозаборное устройство (воздушная заслонка) с автоматическим приводом должно иметь средства, позволяющие внешнему экипажу БАС переключиться с автоматического управления на ручное.

БАС-ВТ.1751. Средства управления двигателем

Внешний экипаж БАС должен быть обеспечен всеми средствами управления, необходимыми для выполнения эксплуатации в нормальных, нештатных и аварийных ситуациях с учетом уровня автоматизации, реализованного в системе управления полетом и ожидаемыми условиями эксплуатации.

БАС-ВТ.1753. Выключатели зажигания

- (а) Выключатели зажигания должны управлять работой каждой цепи зажигания каждого лвигателя.
- (b) Должны быть предусмотрены доступные внешнему экипажу средства быстрого отключения цепей зажигания всех двигателей.
- (c) Выключатели зажигания должны иметь защиту для предотвращения случайного срабатывания.

БАС-ВТ.1755. Органы управления топливной смесью

- (а) При наличии управления топливной смесью для каждого двигателя должен иметься отдельный орган управления. Каждый орган управления топливной смесью должен быть выполнен так, чтобы предотвратить путаницу и случайное срабатывание.
- (b) При управлении требуется отдельная и четкая операция по приведению органа управления в положение обеднения смеси или выключения.

БАС-ВТ.1765. Органы управления отключением

- (а) Для каждой функции БВС-ВТ, необходимой для выполнения полёта, которая может быть отключена с СВП БАС, должны быть предусмотрены средства защиты от случайных срабатываний органа управления отключением. Кроме того, должны иметься средства восстановления функции после ее отключения.
- (b) Контроль отключения топлива выполняется в соответствии с требованиями БАС-ВТ.1743.
- (c) Контроль отключения зажигания выполняется в соответствии с требованиями БАС-ВТ.1753.

БАС-ВТ.1769. Орган управления «аварийное прекращение работы» для систем с автоматическим взлетом или автоматической посадкой

Если БВС-ВТ оборудован системой автоматического взлета или посадки, то для внешнего экипажа БАС в соответствии с БАС-ВТ.1492 должен быть обеспечен легкий доступ к средствам быстрого прерывания взлета или посадки.

УПРАВЛЕНИЕ НЕСКОЛЬКИМИ БВС-ВТ/ УПРАВЛЕНИЕ С НЕСКОЛЬКИХ СВП

БАС-ВТ.1775. Передача управления между станциями внешних пилотов

- В том случае, если БАС предусматривает передачу управления между станциями внешних пилотов, должны быть выполнены следующие требования.
- (а) Координация обеих СВП должна быть обеспечена в процессе передачи управления. Необходимая информация должна отображаться на обеих СВП. Все члены внешнего экипажа должны быть осведомлены о СВП, с которой происходит управление БВС-ВТ в каждый момент времени. Процедуры и методы координации СВП и передачи управления должны быть одобрены Уполномоченным органом.
- (b) Безотказное управление должно быть обеспечено в процессе передачи управления между СВП.
- (c) Передача управления между СВП не должна приводить к возникновению опасных условий полета БВС-ВТ.
- (d) Функции управления и контроля, которые передаются между СВП, должны быть отражены в Руководстве по летной эксплуатации БАС.

87

БЕЗОПАСНОСТЬ СТАНЦИИ ВНЕШНЕГО ПИЛОТА

БАС-ВТ.1777. Контроль доступа к станции внешнего пилота

СВП должна иметь ограничение несанкционированного доступа:

- (a) Ограничение несанкционированного доступа к СВП должно быть соразмерным масштабам и возможностям БАС.
- (b) Ограничению несанкционированного доступа на СВП подлежат функции входа в систему управления БАС и выхода из нее, что предусматривает проведение идентификации аутентификации внешнего пилота. Вход в систему управления должен обеспечить возможность идентифицируемого управления БАС, а выход из системы завершение такого управления.
- (с) Передача управления между СВП в соответствии с БАС-ВТ.1775 также должна обеспечить проведение дополнительной верификации и контроля, позволяющих удостовериться в том, что данный процесс проходит без вмешательства лиц, не имеющих соответствующих полномочий.

ИНДИКАТОРЫ И ПРЕДУПРЕЖДЕНИЯ

БАС-ВТ.1785. Цветовой код (обозначение) предупреждений, предостережений и рекомендательной информации

Аварийные, предупредительные или уведомительные светосигнализаторы, установленные на СВП БАС, должны иметь следующие цвета:

- (a) Красный для светосигнализаторов аварийной сигнализации (сигнализирующих об опасности, требующей немедленных действий);
- (b) Желтый для светосигнализаторов предупредительной сигнализации (сигнализирующих о возможной в будущем необходимости действий);
- (c) Зеленый для светосигнализаторов, использующихся для индикации безопасных режимов эксплуатации;
- (d) Какого-либо другого цвета, включая белый для светосигнализаторов, не указанных в (a) (c), цвет которых, во избежание возможной путаницы, должен значительно отличаться от цветов, перечисленных в пунктах (a) (c).
- (е) Световая сигнализация должна быть легко различима во всех возможных условиях освещенности рабочего места внешнего экипажа на СВП БАС.

БАС-ВТ.1787. Автоматическая диагностика и мониторинг систем БВС-ВТ

- (а) СВП БАС должна иметь систему автоматической диагностики и мониторинга систем БВС-ВТ и обеспечивать внешний экипаж БАС информацией о любом нештатном режиме работы систем БАС, а также об автоматическом переключении на другой режим работы или дублирующую систему.
- (b) Корректирующие действия должны обеспечиваться автоматически либо руководство по корректирующим действиям должно содержаться в Руководстве по летной эксплуатации БАС.

БАС-ВТ.1788. Предупреждение об ухудшении режимов работы

СВП БАС должен быть сконфигурирован таким образом, чтобы обеспечить внешний экипаж БАС информацией о любом нештатном или аварийном режиме работы, включая случаи автоматического переключения на другой режим работы.

БАС-ВТ.1790. Режим индикатора контроля БВС-ВТ

На СВП БАС должны быть предусмотрены средства, оповещающие внешний экипажа БАС об активном режиме контроля системы управления полетом. В случае использования полуавтоматического режима в поле зрения внешнего экипажа БАС должен присутствовать специальный индикатор.

БАС-ВТ.1793. Индикатор положения шасси и предупреждение

- (а) Индикатор положения. СВП БАС должен иметь индикатор положения шасси для информирования внешнего экипажа БАС, что каждое шасси находится в выпущенном (или убранном) положении.
- (b) Предупреждение о выпуске шасси. Если используется убирающееся шасси, то нужно обеспечить звуковое или иное одинаково эффективное устройство предупреждения для информирования внешнего экипажа о неполном выпуске шасси или о том, что оно не встало на замок.
- (с) Шасси, управляемое системой автоматической посадки (см. БАС-ВТ.1492), должно соответствовать требованиям (а) и (b).

Нормы лётной годности НЛГ БАС-ВТ

БАС-ВТ.1797. Индикаторы топливных насосов

На СВП БАС должны быть предусмотрены средства, оповещающие внешний экипаж БАС о неисправности каждого топливного насоса.

БАС-ВТ.1799. Индикатор забора воздуха

Если БВС-ВТ оборудован створкой забора воздуха, каждая резервная (запасная) створка забора воздуха должна иметь средства индикации положения створок для внешнего экипажа в случае, если она не закрыта.

БАС-ВТ.1801. Предупреждение о разрядке аккумуляторов

Должны быть предусмотрены средства, обеспечивающие оповещение внешнего экипажа БАС, если неисправность любой части электросистемы вызывает непрекращающуюся разрядку какого-либо аккумулятора, влияющего на безопасность полета.

БАС-ВТ.1805. Индикатор отсечных клапанов

Если БВС-ВТ оборудован отсечными клапанами с управлением от силового привода, должны быть предусмотрены средства, обеспечивающие внешнему экипажу индикацию о приведении клапана в выбранное положение.

БАС-ВТ.1809. Оповещения и индикаторы электрических систем БВС-ВТ

- (а) Должны быть предусмотрены средства, обеспечивающие немедленное оповещение внешнего экипажа БАС об отказе генератора.
- (b) На СВП БАС должны быть предусмотрены средства, оповещающие внешний экипаж о параметрах системы электроснабжения, существенных для безопасной эксплуатации.
- (c) Внешний экипаж БАС должен немедленно получать однозначное и четко различимое предупреждение о любом отказе электропитания СВП БАС, способном привести к аварийной ситуации.

БАС-ВТ.1817. Предупреждение противопожарной защиты

Если для предотвращения или гашения пожара БВС требуются действия внешнего экипажа БАС (например, отключение оборудования), должны быть предусмотрены быстродействующие средства для немедленного оповещения внешнего экипажа БАС на СВП.

БАС-ВТ.1819. Система индикации обогрева ПВД (если применимо)

Если для выполнения требований БАС-ВТ.1323(d) на БВС-ВТ устанавливается система обогрева приемника воздушного давления, то должна быть предусмотрена система индикации, оповещающая внешний экипажа БАС о нерабочем состоянии системы обогрева, удовлетворяющая следующим требованиям:

- (а) Предусмотренная индикация должна иметь световую индикацию желтого цвета, отчетливо различимую внешним экипажем.
- (b) Предусмотренная индикация должна иметь такую конструкцию, чтобы сигнализировать внешнему экипажу о наличии любого из следующих условий:
- (1) Система обогрева приемника воздушных давлений отключена;
- (2) Система обогрева приемника воздушных давлений включена, но один из элементов системы обогрева не действует.

БАС-ВТ.1821. Индикатор распределения мощности

Каждая цепь распределения мощности на СВП БАС должна иметь индикатор, отображающий падение мощности ниже безопасного минимума.

БАС-ВТ.1825. Предупреждение о блокировании системы управлением полета

Если на БВС-ВТ в соответствии с БАС-ВТ.679 имеется устройство, блокирующее органы управления полетом, внешний экипаж БАС должен быть предупрежден о включении данного устройства.

БАС-ВТ.1827. Предупреждение об отклонении от траектории полета

Если активизированы способы автоматического управления полетом, приведенные в БАС-ВТ.1329, то при отклонении от намеченной траектории полета свыше установленного предела должно отображаться предупреждение.

ИНФОРМАЦИЯ, МАРКИРОВКА И ТАБЛИЧКИ

БАС-ВТ.1831. Общие положения

Информация, маркировка и табличка, которые воспроизводятся или имеются на СВП БАС в соответствии с БАС-ВТ.1541(а), должны:

89

- (а) находиться постоянно на видном месте относительно объекта, индикатора или данных, к которому они относятся;
- (b) легко и однозначно расшифровываться внешним экипажем БАС.

БАС-ВТ.1835. Данные о воздушной скорости

- (а) Если требуется для обеспечения безопасности полета, любые данные о воздушной скорости должны быть отмечены, в соответствии с (b), с помощью маркировок, расположенных на уровне соответствующих указываемых на индикаторе воздушных скоростей.
- (b) Должны быть сделаны следующие маркировки:
- (1) Для максимальной разрешенной скорости V_{NE} красная линия.
- (2) Для максимальной скорости при неработающих двигателях (если запрошена сертификация режима авторотации и V_{NE} (при неработающих двигателях меньше V_{NE}) V_{NE} (при неработающих двигателях) красная радиальная полоска, выполненная косыми штрихами.
- (3) Для зоны предостережения желтая полоса или дуга.
- (4) Для нормального рабочего диапазона зеленая полоса или дуга.
- (5) При скорости, при которой было продемонстрировано соответствие требованиям БАС-ВТ.69 в отношении скорости (темпа) набора высоты при максимальном массе и на уровне моря голубая линия.
- (c) Если максимально разрешенная скорость (V_{NE}) меняется в зависимости от высоты, то должны быть предусмотрены средства, чтобы указать внешнему экипажу БАС соответствующие ограничения для всего диапазона рабочих высот.

БАС-ВТ.1837. Магнитный курс или данные отслеживания

Если магнитный курс или траектория воспроизводятся на СВП БАС, они должны автоматически компенсироваться с учетом девиации.

БАС-ВТ.1839. Данные, относящиеся к силовой установке

Для каждой требуемой силовой установки должны иметься соответствующие данные, которые должны быть доступны на СВП БАС.

(а) Любая максимальная, а также, если применимо, минимальная безопасная рабочая граница должна быть отмечена красной радиальной линией или просто красной линией;

- (b) Каждый диапазон рабочих режимов должен быть промаркирован дугой зеленого цвета или зеленой линией, не простирающейся за пределы максимальной и минимальной границ безопасности;
- (c) Каждый взлетный диапазон и каждая зона предостережения должны быть отмечены дугой желтого цвета или желтой линией; и
- (d) Каждый интервал двигателя или винта, который ограничен в связи с развитием чрезмерных вибрационных напряжений, должен быть отмечен дугами красного цвета или красными линиями.

БАС-ВТ.1841. Данные о количестве масла

Любые данные о количестве масла, воспроизводимые на СВП БАС, должны быть промаркированы с достаточно мелкими приращениями с целью легкого и точного отображения (индикации) количества масла.

БАС-ВТ.1843. Данные о количестве топлива

Должна иметься маркировка в виде красной линии для любых данных, отображаемых на СВП БАС, которая указывает калиброванный нуль, как указано в БАС-ВТ.1337(b)(1) или БАС-ВТ.1585(f)(2).

БАС-ВТ.1845. Маркировки органов управления

- (а) Любой орган управления, переключатель, кнопка или рычаг на СВП БАС должен быть четко промаркирован в соответствии со своими функциями и способом работы.
- (b) Любой орган дистанционного управления, как указано в БАС-ВТ.1741, должен быть соответствующим образом промаркирован.
- (с) Для органов управления подачей топлива в силовую установку:
- (1) Любой селекторный орган управления топливным баком должен быть промаркирован таким образом, чтобы отображать положения, соответствующие каждому баку и каждой позиции перекрестной подачи топлива;
- (2) Если для безопасной эксплуатации требуется использование несколько баков в определенной последовательности, эта последовательность должна быть отмечена (промаркирована) на селекторном переключателе соответствующих баков, либо рядом с ним.
- (3) Условия, при которых можно безопасно использовать всё количество имеющегося топлива в любом топливном баке с ограничением на используемое количество топлива

(нормированном топливном баке), должны быть указаны рядом с селекторным клапаном соответствующего бака;

- (4) Каждый орган управления клапаном должен быть промаркирован с целью указания позиции, соответствующей каждому управляемому двигателю.
- (5) Относительно управления аварийным сливом топлива см. БАС-ВТ.1745(b).
- (d) Используемое количество топлива должно быть промаркировано следующим образом:
- (1) Для топливных систем, не имеющих селекторных органов управления, количество топлива системы, которое может быть использовано, должно быть обозначена рядом с данными о количестве топлива, отображаемыми на СВП БАС.
- (2) Для топливных систем с селекторными органами управления используемое количество топлива, доступное в каждой позиции селекторного органа управления, должно быть обозначено рядом с селекторным органом управления.
- (е) Для вспомогательных, дополнительных и аварийных органов управления:
- (1) Если используется убирающееся шасси, то индикатор, необходимый в соответствии с БАС-ВТ.1793, должен быть промаркирован таким образом, чтобы в любое время внешний экипаж БАС мог убедиться в том, что колеса зафиксированы в крайних положениях; а также
- (2) Каждый аварийный орган управления должен быть красного цвета и должен быть промаркирован в соответствии со способом функционирования.
- (3) Никакой другой орган управления, кроме аварийных органов управления, не должен быть отмечен этим (красным) цветом.

БАС-ВТ.1849. Индикация эксплуатационных ограничений

- (а) На СВП БАС на видном и заметном месте для внешнего экипажа БАС должна быть индикация (в виде постоянной индикации на экране или в виде физической таблички на СВП), указывающая, что БАС должен эксплуатироваться в соответствии с Руководством по летной эксплуатации БАС;
- (b) На видном и заметном месте для внешнего экипажа БАС должна быть индикация (в виде постоянной индикации на экране или в виде физической таблички на СВП), указывающая вид операций, которыми ограничивается эксплуатация БВС-ВТ, или какие операции запрещены в соответствии с БАС-ВТ.1525.

РАЗДЕЛ Ј – СИСТЕМА ОБНАРУЖЕНИЯ И ПРЕДОТВРАЩЕНИЯ СТОЛКНОВЕНИЙ В ВОЗДУХЕ

БАС-ВТ.1851. Общие положения

- (а) Для обнаружения и предотвращения столкновений в воздухе БВС-ВТ должно быть оборудовано средствами АЗН-В с реализацией соответствующих функций.
- (b) Бортовое оборудование АЗН-В должно обеспечивать передачу и прием информации от других участников воздушного движения или служб УВД с последующей ее передачей внешнему экипажу по линии контроля и управления, в соответствии с требованиями раздела Н.
- (c) Информация, передаваемая внешнему экипажу, должна соответствовать требованиям пункта БАС-ВТ.1724.

ПРИЛОЖЕНИЕ А ИНСТРУКЦИЯ ПО ПОДДЕРЖАНИЮ ЛЕТНОЙ ГОДНОСТИ

БАС-ВТ.А.1. Общие положения

- (а) Данное Приложение определяет требования к подготовке Инструкции по поддержанию летной годности, как того требует пункт БАС-ВТ.1529.
- (b) Инструкции по поддержанию летной годности каждого БВС-ВТ должны включать Инструкции по поддержанию летной годности каждого двигателя и воздушного винта, каждого комплектующего изделия, предусмотренного требованиями Норм летной годности (далее в Дополнения компоненты), необходимую информацию о взаимодействии этих компонентов с БВС-ВТ. Если к такому компоненту, установленному на БВС-ВТ, его изготовитель не представил Инструкций по поддержанию летной годности, то Инструкции по поддержанию летной годности БВС-ВТ должны включать дополнительную информацию по этим компонентам, существенно необходимую для поддержания летной годности БВС-ВТ.
- (с) Заявитель должен представить программу, в которой следует показать, как будут распространяться изменения к Инструкциям по поддержанию летной годности, составленные заявителем или изготовителями компонентов, установленных на БВС-ВТ.

БАС-ВТ.А.2. Вид и тип оформления

- (а) Инструкции по поддержанию летной годности должны быть составлены в форме Руководства или Руководств, в зависимости от объема имеющихся данных.
- (b) Вид и тип оформления Руководства или Руководств должен обеспечивать удобство использования материала.

БАС-ВТ.А.3. Содержание

- (a) Руководство или раздел по технической эксплуатации БАС с БВС-ВТ:
- (1) Вводную информацию, содержащую объяснения особенностей конструкции БАС с БВС-ВТ и данные в объеме, необходимом для выполнения технического обслуживания и ремонта.
- (2) Описание конструкции БАС с БВС-ВТ, его систем и установок, включая двигатели, винты и комплектующие изделия.

- (3) Основную руководящую эксплуатационную информацию, описывающую взаимодействие и работу компонентов и систем БАС с БВС-ВТ, включая соответствующие специальные процедуры и ограничения.
- (4) Информацию по обслуживанию БАС и БВС-ВТ, включающую в себя подробные сведения о точках обслуживания, емкости баков и баллонов, типах используемых специальных жидкостей, давлениях в различных системах, размещении эксплуатационных люков и панелей, предназначенных для обеспечения проверки (осмотра) и обслуживания, расположения точек смазки, используемых смазочных материалах, оборудовании, необходимом для обслуживания БВС-ВТ, информацию по его швартовке на стоянке, установке на подъемники и нивелировке.
- (b) Инструкции по техническому обслуживанию:
- (1) Периодичность и объем проведения работ по каждому компоненту БАС с БВС-ВТ и его двигателя, вспомогательных силовых установок, оборудования, вспомогательного винтов, приборов и оборудования, в которых указываются рекомендуемые сроки их очистки, осмотра, регулировки, проверки и смазки, а также уровень осмотра, разрешенные допуски на износы и работы, которые рекомендуется проводить в это время. Однако заявитель может указать в качестве источника информации такого рода информацию изготовителя компонента, если заявитель докажет, что данный элемент обладает высокой степенью сложности, требующей специально разработанной методики обслуживания, спешиального оборудования для проверки или привлечения экспертов. Необходимо также включить сведения о рекомендуемой периодичности проведения капитального ремонта компонентов и ссылки на раздел «Ограничение летной годности» данного Руководства. Кроме того, заявитель должен представить программу осмотра, содержащую сведения о частоте И объеме необходимых для обеспечения летной годности.
- (2) Информацию по поиску мест отказов и повреждений с описанием возможных отказов и повреждений, способов их обнаружения и действий по их устранению.
- (3) Информацию о порядке и методах снятия и замены компонентов или их составных частей со всеми необходимыми мерами защиты от повреждений.

(4) Другие общие технологические указания, включая методы наземного контроля систем, нивелировки, взвешивания и определения положения центра тяжести, установки на подъемники и швартовки, а также ограничения по хранению.

- (с) Схемы размещения крышек люков и панелей для доступа при техническом обслуживании И ремонте и информацию, необходимую для обеспечения доступа для проверки и осмотра в случае отсутствия смотровых панелей.
- (d) Подробные сведения о применении специальных методов контроля, включая рентгенографический и ультразвуковой контроль, если даны указания о применении таких методов.
- (е) Информацию, необходимую для выполнения заключительных работ и защитной обработки конструкции после проверок и осмотров.
- (f) Все данные, относящиеся к крепежным элементам и узлам конструкции, такие, как их маркировка, рекомендации по замене и допустимые значения момента затяжки
- (g) Перечень необходимого специального инструмента и приспособлений.

БАС-ВТ.А.4. Раздел «Ограничения летной годности»

В документы, входящие в Инструкцию по поддержанию летной годности, должен входить раздел «Ограничения летной годности», который должен четко отделяться и легко отличаться от остальных разделов документов. В этом разделе должны быть указаны каждый из предписанных периодов обязательной замены компонентов, изделий, устройств, элементов конструкции, интервалы между проверками и осмотрами конструкции и соответствующие процедуры проверок и осмотров, одобренные в соответствии требованиями пункта БАС-ВТ.571. Если Инструкция по поддержанию летной годности состоит из нескольких документов, то этот раздел должен быть включен в основной документ.

приложение в

[Зарезервировано]

приложение С

[Зарезервировано]

ПРИЛОЖЕНИЕ D УРОВНИ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ ВЫСОКОЙ ИНТЕНСИВНОСТИ (HIRF) И ИСПЫТАТЕЛЬНЫЕ УРОВНИ HIRF ДЛЯ ОБОРУДОВАНИЯ

Настоящее Приложение определяет уровни воздействия и испытательные уровни HIRF для электрических и электронных систем, указанных в пункте БАС-ВТ.1317. Уровни выражены в среднеквадратичных единицах, измеренных для пика цикла модуляции.

(a) Уровень воздействия I приведен в Таблице 1:

Таблица I – Уровень воздействия I HIRF

Частота	Напряженность поля (вольт на метр)	
	Пиковая	Средняя
10 кГц – 2 МГц	50	50
2 МГц – 30 МГц	100	100
30 МГц – 100 МГц	50	50
100 МГц – 400 МГц	100	100
400 МГц – 700 МГц	700	50
700 МГц – 1 ГГц	700	100
1 ГГц – 2 ГГц	2000	200
2 ГГц – 6 ГГц	3000	200
6 ГГц – 8 ГГц	1000	200
8 ГГц – 12 ГГц	3000	300
12 ГГц – 18 ГГц	2000	200
18 ГГц – 40 ГГц	600	200

В этой таблице пиковые значения уровней даны для границ частотных диапазонов.

(b) Уровень воздействия II приведен в Таблице II:

Таблица II – Уровень воздействия II HIRF

Частота	Напряженность поля (вольт на метр)	
	Пиковая	Средняя
10 кГц – 500 кГц	20	20
500 кГц – 2 МГц	30	30
2 МГц – 30 МГц	100	100
30 МГц – 100 МГц	10	10
100 МГц – 200 МГц	30	10
200 МГц – 400 МГц	10	10
400 МГц – 1 ГГц	700	40
1 ГГц – 2 ГГц	1300	160
2 ГГц – 4 ГГц	3000	120
4 ГГц – 6 ГГц	3000	160

6 ГГц – 8 ГГц	400	170
8 ГГц — 12 ГГц	1230	230
12 ГГц – 18 ГГц	730	190
18 ГГц – 40 ГГц	600	150

В этой таблице пиковые значения уровней даны для границ частотных диапазонов.

(c) Уровень воздействия III приведен в Таблице III:

Таблица III- Уровень воздействия III HIRF

Частота	Напряженность поля (вольт на метр)	
	Пиковая	Средняя
10 кГц – 100 кГц	150	150
$100 \ \mathrm{k}\Gamma$ ц $-400 \ \mathrm{M}\Gamma$ ц	200	200
400 МГц – 700 МГц	730	200
700 МГц – 1 ГГц	1400	240
1 ГГц – 2 ГГц	5000	250
2 ГГц – 4 ГГц	6000	490
4 ГГц – 6 ГГц	7200	400
6 ГГц – 8 ГГц	1100	170
8 ГГц – 12 ГГц	5000	330
12 ГГц – 18 ГГц	2000	330
18 ГГц – 40 ГГц	1000	420

В этой таблице пиковые значения уровней даны для границ частотных диапазонов.

- (d) Испытательный уровень I воздействия HIRF:
- (1) В диапазоне от 10 кГц до 400 МГц для проведения испытаний на восприимчивость по проводам с синусоидальной помехой используйте квадратичную модуляцию с частотой 1 кГц и глубиной более 90%. Значения тока при испытаниях на восприимчивость по проводам должны начинаться как минимум с 0,6 мА на 10 кГц, увеличиваясь на 20 дБ на декаду до минимум 30 мА на 500 кГц.
- (2) В диапазоне от $500 \ \mathrm{k\Gamma u}$ до $40 \ \mathrm{M\Gamma u}$ при испытаниях на восприимчивость по проводам значение тока должно быть по крайней мере $30 \ \mathrm{mA}$.
- (3) В диапазоне от 40 МГц до 400 МГц испытания на восприимчивость по проводам следует проводить при значении тока, начиная как минимум с 30 мА на 40 МГц, уменьшая на 20 дБ на декаду до минимума 3 мА на 400 МГц.
 - (4) В диапазоне от 100 МГц до 400 МГц для

проведения испытаний на восприимчивость по полю с максимальным уровнем синусоидальной помехи как минимум $20~\mathrm{B/m}$ используйте квадратичную модуляцию с частотой $1~\mathrm{k}\Gamma$ ц и глубиной более 90%.

- (5) В диапазоне от 400 МГц до 8 ГГц для проведения испытаний на восприимчивость по полю используйте импульсную модуляцию с максимальной величиной 150 В/м с коэффициентом заполнения 4% и частотой повторения импульсов 1 кГц. Данный сигнал должен включаться и отключаться с частотой 1 Гц и коэффициентом заполнения 50%.
- (е) Испытательный уровень 2 воздействия HIRF. Испытательный уровень 2 воздействия HIRF для оборудования это уровень воздействия II HIRF, представленный в Таблице II настоящего Приложения, уменьшенный с учетом передаточной функции вертолета и коэффициента затухания. Испытания должны проводиться в частотном диапазоне от 10 кГц до 8 ГГц.
- (f) Испытательный уровень 3 воздействия HIRF.
- (1) В диапазоне от $10 \ \text{к}\Gamma\text{ц}$ до $400 \ \text{M}\Gamma\text{ц}$ испытания на восприимчивость по проводам следует проводить при значении тока, начиная как минимум с $0.15 \ \text{MA}$ на $10 \ \text{k}\Gamma\text{ц}$, увеличиваясь на $20 \ \text{д}Б$ на декаду до минимум $7.5 \ \text{MA}$ на $500 \ \text{k}\Gamma\text{ц}$.
- (2) В диапазоне от $500 \ \mathrm{k}\Gamma\mathrm{u}$ до $40 \ \mathrm{M}\Gamma\mathrm{u}$ при испытаниях на восприимчивость по проводам значение тока должно быть как минимум 7,5 мА.
- (3) В диапазоне от 40 МГц до 400 МГц значения тока при испытаниях на восприимчивость по проводам должны начинаться как минимум с 7,5 мА на 40 МГц, уменьшаясь на 20 дБ на декаду до минимум 0,75 мА на 400 МГц.
- (4) В диапазоне от $100 \ M\Gamma$ ц до $8 \ \Gamma\Gamma$ ц при испытаниях на восприимчивость по полю используйте как минимум $5 \ B/m$.

приложение е

[Зарезервировано]

ПРИЛОЖЕНИЕ F ПРИЕМЛЕМАЯ ПРОЦЕДУРА ИСПЫТАНИЙ САМОЗАТУХАЮЩИХ МАТЕРИАЛОВ

БАС-ВТ.F.1. Условия испытаний

Образцы должны быть выдержаны при температуре $+(21\pm2)^{\circ}$ С и относительной влажности $(50\pm5)\%$ до достижения равновесия влажности или в течение 24 ч. Одновременно можно брать из кондиционированной атмосферы только по одному образцу и непосредственно перед воздействием на него пламени.

БАС-ВТ.F.2. Форма образцов

Материалы, предоставляемые для испытаний, должны быть либо в виде участков, вырезанных из готовых деталей, которые устанавливаются на БВС-ВТ, либо в виде образцов, имитирующих вырезанные участки: например, образец, вырезанный из плоского листа материала, или модель готовой детали. Образец можно вырезать из любой части готовой детали, однако такие готовые изделия, как сотовые панели, нельзя разделять для испытаний. Толщина образца должна быть не более минимальной толщины, установленной для применения на БВС-ВТ, за следующим исключением: толстые детали из пеноматериалов должны испытываться толщине 12,7 мм. Что касается тканей, то для определения наиболее критических условий воспламеняемости ИХ следует подвергать испытаниям в направлениях как основы, так и утка. При проведении испытаний, указанных в пункте F.4 настоящего Приложения, образец следует помещать в металлическую рамку таким образом, чтобы:

- (а) Надежно фиксировались длинные кромки и верхняя кромка.
- (b) Незакрытая поверхность образца имела как минимум ширину 51 мм и длину 305 мм, кроме случая, когда фактический размер детали на БВС-ВТ меньше; и
- (с) Кромка, к которой подносится пламя горелки, не должна быть отделенным или защищенным краем образца, а должна представлять реальное поперечное сечение материала или детали, установленной на БВС-ВТ.

БАС-ВТ.**F.3.** Аппаратура

Испытания должны проводиться в шкафу без

тяги, причем испытания в вертикальном положении по утвержденным методикам. Образцы, которые по своим габаритам не могут уместиться в шкафу, должны испытываться в аналогичных условиях отсутствия тяги.

БАС-ВТ.**F.4.** Испытания в вертикальном положении

Должны быть испытаны, как минимум, 3 образца и результаты испытаний осреднены. У переплетений, тканей направление соответствующее наиболее критическим условиям воспламеняемости, должно быть параллельно самому длинному размеру. Каждый образец должен удерживаться в вертикальном положении. Образец должен быть подвергнут воздействию горелки Бунзена или Тиррила с соплом, имеющим номинальный внутренний диаметр 9,5 мм и отрегулированным на высоту пламени 38 мм. Минимальная температура пламени, измеренная в пламени калиброванным термоэлектрическим пирометром, должна быть 843°С. Нижняя кромка образца должна находиться на высоте 19 мм над верхним краем горелки. Дополнение пламени должно производиться по оси нижней кромки образца, продолжительность воздействия пламени должна составлять 60 с, после чего пламя должно удаляться. Следует регистрировать продолжительность горения. длину обугленного участка и продолжительность горения капель, если таковые имеются. Длина обугливания, определяемая в пункте F.5, должна измеряться с точностью до 2,5 мм.

БАС-ВТ.F.5. Длина обугливания

Длина обугливания – это расстояние от первоначальной кромки до самого дальнего видимого повреждения испытываемого образца в результате воздействия пламени, включая участки, частично или полностью уничтоженные, обугленные или ставшие хрупкими, но исключая vчастки закопченные, изменившие пвет. покоробленные или обесцвеченные, а также участки, на которых материал сморщился или оплавился от воздействия источника тепла.

ИСПОЛЬЗОВАННЫЕ ТЕРМИНЫ, ИХ ЗНАЧЕНИЯ

Авторотация — условия полета беспилотного воздушного судна вертолетного типа, при которых несущий винт/винты приводится в движение только воздействием воздуха, возникающим при движении летательного аппарата (самовращение несущего винта).

Автоматизированное управление – управление внешним пилотом высотой, курсом и воздушной скоростью полета БВС. Система управления полетом управляет средствами управления БВС, чтобы достигнуть заданных параметров.

Автоматическое управление – управление траекторией, скоростью и курсом полета БВС полностью бортовой системой управления полетом. Вмешательство внешнего пилота не требуется, кроме загрузки или изменения необходимого плана полета.

Беспилотная авиационная система — (unmanned aircraft system): комплекс, включающий одно или несколько беспилотных BC, оборудованных системами навигации и связи, средствами обмена данными и целевой нагрузкой, а также наземные технические средства передачи-получения данных, используемые для управления полетом и обмена данными о параметрах полета, служебной информацией и информацией о целевой нагрузке такого или таких BC, и канал связи со службой управления воздушным движением.

Беспилотное воздушное судно – (unmanned aircraft): воздушное судно, управляемое в полете пилотом, находящимся вне борта такого ВС, или выполняющее автономный полет по заданному предварительно маршруту.

Вертолет – винтокрылый летательный аппарат с несущим винтом/винтами, горизонтальный полет которого, производится только за счет работы несущего винта/винтов, приводимого в движение двигателем/двигателями.

БВС-ВТ – воздушное судно тяжелее воздуха, полет которого, осуществляется за счет подъемной силы, создаваемой одним или несколькими несущими винтами.

Внешние воздействия (явления) — события, источник происхождения которых не связан с конструкцией БВС, такие, как атмосферные воздействия (например, порыв ветра, температурная инверсия, обледенение и удар молнии), состояние ВПП

Внешний экипаж — внешний экипаж беспилотного воздушного судна состоит из одного либо нескольких внешних пилотов, один из которых является командиром беспилотного воздушного судна. Внешний экипаж может включать наблюдателя (наблюдателей), оператора целевой нагрузки и других лиц, участвующих в управлении беспилотным воздушным судном.

Вынужденная посадка — состояние, вызванное одним или комбинацией условий неисправности, которые не дают БВС возможность совершить штатную посадку на запланированную основную посадочную площадку, хотя при этом система управления полетом по-прежнему способна поддерживать управляемость и маневрирование БВС.

Значительные (существенные) — условия возникновения неисправности, которые либо сами по себе, либо в связи с возросшей нагрузкой на внешний экипаж приводят к наихудшему возможному результату в форме аварийной посадки БВС на заранее определенную площадку, для которой можно обоснованно ожидать, что будут отсутствовать серьезные повреждения; либо условия возникновения неисправности, которые потенциально могут привести к ранениям внешнего экипажа БВС или наземного персонала.

Канал передачи данных — беспроводной канал связи между одной или несколькими СВП и одним или несколькими БВС, организуемый системой приемо-передающих устройств, работающих на заданной частоте и осуществляющих устойчивый обмен данных.

Контролируемая местность – применительно к настоящим НЛГ под контролируемой местностью понимается территория, доступ на которую для посторонних лиц запрещён и контролируется организацией, эксплуатирующей БАС, или иной организацией, обеспечивающей отсутствие на территории посторонних лиц.

Конфигурация — определенное сочетание положений таких подвижных элементов, как закрылки и шасси и т. д., влияющих на аэродинамические характеристики БВС.

Линия видимости – прямая линия (без препятствий на пути ее прохождения) между передатчиком и приемником.

Станция внешнего пилота (remote pilot station) – рабочее место в составе наземной станции управления, с которого внешний пилот управляет полетом и функциональными системами беспилотного воздушного судна.

Наземный персонал – квалифицированный персонал, необходимый для выполнения наземных операций (таких как заправка и техническое обслуживание БВС-ВТ) таким образом, как они описаны в Руководстве по летной эксплуатации или в Руководстве по технической эксплуатации.

Незначительные (несущественные) — условия возникновения неисправности, которые несущественно снижают уровень безопасности БВС-ВТ и включают в себя действия внешнего экипажа БАС, которые вполне могут быть осуществимы и реализованы. Эти условия могут включать в себя небольшое уменьшение резерва безопасности или функциональных возможностей БВС-ВТ, а также незначительное увеличение нагрузки на внешний экипаж БАС.

Несущий винт – винт, создающий основную подъемную силу.

Нормы летной годности – требования к конструкции и характеристикам авиационной техники, направленные на обеспечение безопасности полетов.

НЛГ БАС-ВТ

Одобрение – подтверждение соответствия конкретного юридического лица.

Ожидаемые условия эксплуатации — условия, которые известны из практики или возникновение которых можно с достаточным основанием предвидеть в течении срока службы беспилотного воздушного судна с учетом его назначения. Эти условия включают в себя параметры состояния и факторы воздействия на беспилотное воздушное судно внешней среды, эксплуатационные факторы, влияющие на безопасность полета.

Ожидаемые условия эксплуатации не включают в себя:

- а) Экстремальные условия, встречи с которыми можно надежно избежать путем введения эксплуатационных ограничений и правил.
- б) Экстремальные условия, которые возникают настолько редко, что требование выполнять Нормы летной годности в этих условиях привело бы к обеспечению более высокого уровня летной годности, чем это необходимо и практически обосновано.

Опасные – условия возникновения неисправности, которые либо сами по себе, либо в связи с возросшей рабочей нагрузкой на внешний экипаж БАС приводят к наихудшему возможному результату в форме прекращения управляемого полета по контролируемой траектории или же к совершению вынужденной посадки с потенциальной возможностью потери БВС-ВТ, хотя вполне обоснованно можно ожидать, что фатальный исход отсутствует, либо реализация условий возникновения неисправности, которые потенциально могут привести к серьезным ранениям внешнего экипажа БАС или наземного персонала.

Отказное состояние (функциональный отказ, вид отказа системы) — под отказным состоянием (функциональным отказом, видом отказа системы) понимается состояние системы в целом, характеризуемое конкретным нарушением ее функций независимо от причин, вызывающих это состояние. Влияние отказного состояние определяется на уровне каждой системы через последствия, возникающие вследствие нарушения нормального функционирования этой системы. Оно может характеризоваться и взаимным влиянием на другие существенные системы и характеристики беспилотного воздушного судна.

В качестве критериев оценки последствий отказных состояний (функциональных отказов, видов отказов системы) могут быть приняты следующие:

- Влияние людей на земле;
- Влияние на внешний экипаж БВС;
- Влияние на нагрузки экипажей ВС, находящихся в том же воздушном пространстве;
- Влияние на нагрузку служб УВД;
- Влияние на БАС с БВС, функциональные возможности и запас безопасности.

Отказные состояния (функциональные отказы, виды отказов системы) могут быть классифицированы по степени опасности их последствий следующим образом:

- (а) Без последствий. Отказные ситуации, которые не влияют на риск возникновения опасной ситуации, при этом:
- (1) отсутствуют воздействия на людей на земле;
- (2) отсутствуют воздействия на внешний экипаж;
- (3) отсутствует влияние на экипажи ВС, находящихся в том же воздушном пространстве;
- (4) отсутствует влияние на службу УВД;
- (5) отсутствуют воздействия, влияющие на безопасность выполнения полетов БВС.
- (b) Усложнение условий полета. Отказные ситуации, которые вызывают:
- (1) минимальные травмы одного или более человек на земле;
- (2) незначительное увеличение нагрузки на внешний экипаж;
- (3) незначительное увеличение нагрузки на экипажи ВС, находящихся в том же воздушном пространстве;
- (4) незначительное увеличение нагрузки службы УВД;
- (5) незначительное снижение функциональных возможностей БАС с БВС, незапланированная посадка БВС на подходящей площадке или возврат на точку старта.
 - (с) Сложная ситуация. Отказные ситуации, которые вызывают:
 - (1) средней тяжести ранения одного и более человек на земле;
 - (2) значительное увеличение нагрузки на внешний экипаж, физический дискомфорт;
 - (3) значительное увеличение нагрузки на экипажи ВС, находящихся в том же воздушном пространстве;
 - (4) значительное увеличение нагрузки службы УВД;
- (5) значительное снижение функциональных возможностей БАС с БВС, посадка БВС на ближайшей подходящей площадке или перед собой, посадка в режиме самовращения несущего винта с возможным разрушением БВС.
 - (d) Аварийная ситуация. Отказные ситуации, которые вызывают:
 - (1) тяжелые ранения одного или более человек на земле;
 - (2) чрезмерное увеличение нагрузки на внешний экипаж, физическое недомогание;
 - (3) чрезмерное увеличение нагрузки на экипажи ВС, находящихся в том же воздушном пространстве;
 - (4) чрезмерное увеличение нагрузки службы УВД;
- (5) невосстановимое снижение функциональных возможностей БВС с БВС, включая разрушение воздушного судна, приводящее к тяжелым ранениям одного или более человек на земле.

- (е) Катастрофическая ситуация. Отказные ситуации, которые вызывают:
- (1) гибель одного или более человек на земле;
- (2) гибель внешнего экипажа, пассажира БВС или потеря способности экипажем управлять БВС;
- (3) гибель одного члена экипажа или пассажира ВС, находящегося в том же воздушном пространстве, в случае, когда завершить безопасно полет ВС практически невозможно;
 - (4) промышленную катастрофу;
- (5) неуправляемый непредсказуемый полет, с последующим разрушением воздушного судна, которое вызывает гибель одного или более человек.

Ошибка – событие, заключающееся в неправильных действиях экипажа и персонала по техническому обслуживанию.

- По частоте возникновения события (отказные состояния, внешние воздействия, ошибки и др.) делятся на следующие категории:
- (а) Вероятные. Могут произойти один или несколько раз в течение срока службы каждого беспилотного воздушного судна данного типа. Вероятные события подразделяются на частые и умеренно вероятные.
 - (b) Невероятные (редкие). Невероятные события подразделяются на две категории:
- (1) **Маловероятные**. Вряд ли произойдут на каждом беспилотном воздушном судне в течение его срока службы, но могут произойти несколько раз, если рассматривать большое количество беспилотных воздушных судов данного типа.
- (2) **Крайне маловероятные**. Вряд ли возникнут за весь срок эксплуатации всех беспилотных воздушных судов данного типа, тем не менее, их нужно рассматривать как возможные.
- (с) Практически невероятные. Настолько невероятные, что нет необходимости считать возможным их возникновение.

Численные значения. При необходимости количественной оценки вероятностей возникновения событий могут использоваться указанные ниже величины:

```
Вероятные — более 10^{-5}; Частые — более 10^{-3}; Умеренно вероятные — в диапазоне 10^{-3} - 10^{-5}; Невероятные (редкие) — в диапазоне 10^{-5} - 10^{-7}; Маловероятные — в диапазоне 10^{-5} - 10^{-6}; Крайне маловероятные — в диапазоне 10^{-6} - 10^{-7}; Практически невероятные — менее 10^{-7}.
```

Вероятности должны устанавливаться как средний риск на час полета, продолжительность которого равна среднему времени полета по типовому профилю. В тех случаях, когда отказ критичен для определенного этапа полета, вероятность его возникновения на этом этапе полета может быть также усреднена на час полета по типовому профилю.

Рабочая нагрузка – количество работы, назначенной или ожидаемой от лица за определенный промежуток времени.

Сертификат типа — документ, выданный Уполномоченным органом, который подтверждает соответствие БАС-ВТ требованиям Сертификационного базиса, основанного на действующих требованиях норм летной годности и требованиях экологического соответствия. Применительно к настоящим НЛГ под Сертификатом понимается одобрительны документ БАС-ВТ, на получение которого подана заявка — Сертификат типа, Одобрение главного изменения, Дополнительный сертификат типа.

Система связи — средства, которые позволяют поддерживать связь в рамках системы УВД между внешним экипажем БАС, находящимся в СВП, и службой управления воздушным движением.

Система управления полетом и передачи данных — система управления полетом включает в себя датчики, сенсоры, исполнительные механизмы, компьютеры и все иные элементы системы БВС-ВТ, которые необходимы для управления высотой, скоростью и траекторией полета БВС-ВТ. Система осуществляет прием и передачу данных на СВП.

- (а) Система управления полетом может быть разделена на две части:
- (1) Комплекс для управления полетом система, которая на основе программируемого модуля управления задействует исполнительные органы управления полетом посредством выдачи необходимых сигналов.
- (2) Средства контроля условий полета датчики, сенсоры, исполнительные механизмы и все другие элементы системы БВС-ВТ (за исключением компьютера для управления полетом), которые необходимы для выдерживания заданных параметров высотой, скоростью и траекторией полета БВС-ВТ.
 - (b) Органы управления полетом:
- (1) Основные органы управления полетом основные органы управления полетом представляют собой такие органы управления, которые используются в системе управления полетом БВС-ВТ для непосредственного и немедленного управления по тангажу, крену, рысканию, а также для управления скоростью.
- (1) Дополнительные органы управления полетом вторичные органы управления полетом представляют собой органы управления, отличные от основных органов управления, например, такие как органы управления тормозами колес шасси, интерцепторами, щитками.

Уполномоченный орган — Федеральное агентство воздушного транспорта, на которое Правительством Российской Федерации возложены организация и проведение обязательной сертификации гражданских воздушных

судов, авиационных двигателей, воздушных винтов, бортового авиационного оборудования гражданских воздушных судов, беспилотных авиационных систем и (или) их элементов и выдача документа, подтверждающего соответствие требованиям федеральных авиационных правил юридических лиц, осуществляющих разработку, изготовление воздушных судов, а также другой авиационной техники;

Целевая нагрузка – оборудование, которое не является необходимым для выполнения полёта, устанавливаемое на БВС-ВТ в целях выполнения назначенного полетного задания.

Эксплуатационные ограничения — условия, режимы и значения параметров, преднамеренный выход за пределы которых недопустим в процессе эксплуатации БВС-ВТ.

Нормы лётной годности НЛГ БАС-ВТ

ПРИНЯТЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

V – воздушная скорость БВС-ВТ вдоль траектории полета;

 V_{NE} — непревышаемая скорость;

«H - V» — зона опасных сочетаний высоты и скорости;

 α — эффективный угол атаки несущего винта (радиан);

 ω — угловая частота вращения винта (рад/с);

R — радиус несущего винта;

μ – отношение скорости полета БВС в плоскости диска несущего винта к окружной скорости

лопастей несущего винта;

- скорость потоков окружающего воздуха;

Стояночная нагрузка на каждую лыжу при максимальной расчетном весе БВС;

n – эксплуатационная перегрузка;

 W_M — статическая реакция на главную опору шасси; АЗН-В — автоматическое зависимое наблюдение — вещание;

АНО – аэронавигационные огни;

Л – левый АНО, двугранный угол его светового потока; П – правый АНО, двугранный угол его светового потока;

- хвостовой, задний АНО, двугранный угол его светового потока;

БАС – беспилотная авиационная система; БВС – беспилотное воздушное судно;

ВПП — взлетно-посадочная полоса/площадка; ВПУ — внутреннее переговорное устройство;

ВС — воздушное судно; ВТ — вертолётного типа; ЛР — летное руководство; НЛГ — нормы летной годности; ОВЧ — очень высокая частота;

ОУЭ — ожидаемые условия эксплуатации; ПВД — приёмник воздушного давления; ПВП — правила визуального полета; ППП — правила полетов по приборам;

РЛЭ — руководство по летной эксплуатации; РЗЦ — руководство по загрузке и центровке;

СВП – станция внешнего пилота;

УВД – управление воздушным движением;

ЦН – целевая нагрузка;

ЭМС – электромагнитная совместимость;

BVLOS – beyond visual line of sight (за пределами прямой видимости);

HIRF – high-intensity radiated field (электромагнитные поля высокой интенсивности);

VLOS – visual line of sight (в пределах прямой видимости).