Ревизия 01	Дата	30.04.2025
№ ИМ-21.33-05		
МАТЕРИАЛЫ		
ИНФОРМАЦИОННЫЕ		

Процедуры обработки результатов испытаний образцов на малоцикловую и многоцикловую усталость

Москва, 2025 г.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Nº	Описание изменения	Номер ревизии	Дата
1.	Введение в действие первоначального документа	01	30.04.2025
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			

Первоначальная редакция данных методических рекомендаций подготовлена Авиарегистром России на основе Методических рекомендаций «Процедуры обработки результатов испытаний образцов на малоцикловую и многоцикловую усталость», разработанных ФАУ «ЦИАМ им. П.И. Баранова».

СОДЕРЖАНИЕ

1 Цель и назначение	4
2 Нормативные ссылки и источники информации	5
3 Термины и определения	7
4 Сокращения и обозначения	8
5 Формулировки основного и связанных параграфов отечественных годности	*
6 Формулировки основного и связанных параграфов зарубежных Норм летно	ой годности 11
7 Требования к объему испытаний	12
8 Регрессионные модели усталостных кривых	13
9 Основные этапы статистического анализа результатов испытаний на МЦУ в	и МнЦУ16
10 Определение параметров регрессионных моделей усталостных кривых	20
11 Диагностика линейных регрессионных моделей усталостных кривых	24
12 Сравнение регрессионных моделей и выбор модели усталостной кривой	43
13 Построение базисных усталостных кривых	46
14 Примеры обработки данных	48
Приложение А	72
Приложение Б	83

В соответствии с требованиями нормативной документацией для расчетов на прочность основных и ответственных деталей используются расчетные значения характеристик конструкционной прочности материала детали в том числе характеристики малоцикловой (МЦУ) и многоцикловой усталости (МнЦУ).

Целью данных методических рекомендаций (MP) является изложение приемлемых процедур обработки результатов испытаний образцов на малоцикловую и многоцикловую усталость для определения средней и базисной кривой в дополнение к рекомендательному циркуляру РЦ-АП33.15-1.

Данные MP распространяются на металлические сплавы и устанавливают процедуры статистической обработки результатов усталостных испытаний стандартных образцов на малоцикловую и многоцикловую усталость для определения средней и базисной кривой.

Описанные в MP алгоритмы предназначены для обработки результатов усталостных изотермических испытаний стандартных образцов, полученных при испытаниях на МЦУ с контролем как по усилию, так и по деформации, и на МнЦУ.

MP не распространяются на вопросы учета асимметрии цикла и температуры. Результаты испытаний, полученные при различных коэффициентах асимметрии и температурах, обрабатывают отдельно.

2 Нормативные ссылки и источники информации

В настоящих рекомендациях используются ссылки на следующие нормативные правовые акты Российской Федерации и источники информации:

- [1] Межгосударственный авиационный комитет. Авиационные правила часть АП-33. Нормы летной годности двигателей воздушных судов. 2012, С. 86.
- [2] FEDERAL AVIATION RULES. PART 33—AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES.
- [3] European Aviation Safety Agency. Certification Specifications and Acceptable Means of Compliance for Engines. CS-E Amendment 5, 2018, C. 211.
- [4] Рекомендательный циркуляр № РЦ-АП-33.15-1. Методические рекомендации по определению расчётных значений характеристик конструкционной прочности металлических материалов. 2013.
- [5] Степнов М.Н., Шаврин А.В. Статистические методы обработки результатов механических испытаний: Справочник. 2-е изд., испр. и доп. М.: Машиностроение, 2005. 400с.
- [6] Методические указания РД 50-705-91. Расчеты и испытания на прочность в машиностроении. Планирование и статистическая обработка результатов статических испытаний и испытаний на усталость. Москва. 1992.
- [7] Metallic Materials Properties Development and Standartization (MMPDS) // Federal Aviation Administration. 2016.
- [8] Вучков И., Бояджиева Л., Солаков Е. Прикладной регрессионной анализ М.: Финансы и статистика. 1987. 242 с.
- [9] Rawlings J.O., Pantula S.J., Dickey D.A. Applied Regression Analysis: a research tool. Springer. 1998. 671 p.
- [10] Методика ПМ08.271. Вычисление расчетных значений характеристик конструкционной прочности металлов и сплавов. 2018.
- [11] Socie D.F. Fatigue-life prediction using local stress-strain concepts // Experimental Mechanics. 1977. 7p.
- [12] Basan R., Franulovic M., Prebil I., Crnjaric-Zic N. Analysis of strain-life fatigue parameters and behavior of different groups of metallic materials // International Journal of Fatigue. 2011. Pp. 484-491
- [13] Manson S.S. Fatigue: a complex subject some simple approximations // NASA technical memorandum. 1965. 107 p.
 - [14] Мастицкий С.Э., Шитиков В.К. Статистический анализ и визуализация данных

- с помощью R. М.: ДМК Пресс, 2015. 496 с.
- [15] Shapiro S.S., Wilk M.B. An analysis of variance test for normality (complete samples) // Biometrika, Vol. 52, No. 3/4. 1965. Pp. 591-611.
- [16] Anderson T.W., Darling D.A. Asymptotic theory of certain «Goodness of fit» criteria based on stochastic processes // AMS. V. 23. 1952. Pp. 193-212.
- [17] Кобзарь А.И. Прикладная математическая статистика. М.: Физматлит, 2006. 468 с.
- [18] Магнус Я.Р., Катышев П.К., Персецкий А.А. Эконометрика. Начальный курс. 6-е изд., перераб. и доп. М.: Дело, 2004. 576 с.
- [19] White H. A heteroscedasticity-consistent covariance matrix estimator and direct test for heteroscedasticity // Econometrica: Journal of the Econometric Society. 1980. Pp. 817-838.
- [20] Breusch T.S., Pagan A.R. A simple test for heteroscedasticity and random coefficient variation // Econometrica: Journal of the Econometric Society. 1979. Pp. 1287-1294.
- [21] ГОСТ 25.502-79. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Методы испытаний на усталость. 1985 г.
- [22] Durbin J., Watson G.S. Testing for serial correlation in least square regression. I // Biometrika. Vol. 38. 1950. Pp. 409-428.
- [23] Boller Chr., Seeger T. Materials data for cyclic loading. Part C: High-alloy steels. Elsevier. 1987. 558 p.
- [24] ГОСТ Р ИСО 16269-4. Статистические методы. Статистическое представление данных. Часть 4. Выявление и обработка выбросов. 2017.
- [25] Akaike H. A new look at the statistical model identification // IEEE transactions on automatic control. 19(6). 1974. Pp. 716-723.
- [26] ГОСТ Р 50779.29-2017. Статистические методы. Статистическое представление данных. Часть 6. Определение статистических толерантных интервалов. 2005.
- [27] Carrion P.E., Shamsaei N. Strain-based fatigue data for Ti-6Al-4V ELI under fully-reversed and mean strain loads // Data in brief. Vol. 7. 2016. Pp. 12-15.

3 Термины и определения

Термин	Определение
Мягкий цикл	Цикл, в котором контролируется размах напряжений и уровень
нагружения	максимальных напряжений
Жесткий цикл	Цикл, в котором контролируется размах деформаций и уровень
нагружения	максимальных деформаций
Образец,	Образец, окончанием испытания для которого послужило
доведенный до	разрушение, падение нагрузки или иное событие, заданное в
разрушения	качестве критерия разрушения
Образец,	Образец, окончанием испытания для которого послужило
отстоявший базу	достижение заданного числа испытательных циклов
Генеральная совокупность	Множество всех возможных результатов наблюдений
Регрессионная модель усталостной кривой	Регрессионная модель, связывающая число циклов до окончания испытания и уровень нагрузки
Оптимальная	Модель, отражающая все факторы, способные влиять на
регрессионная	математическое ожидание зависимой переменной и наиболее
модель	адекватно отражающая усталостные свойства материала
Средняя усталостная	Функция регрессии выбранной в результате анализа
кривая	регрессионной модели усталостной кривой
Базисная усталостная кривая (γp)	Кривая, выше которой с заданной доверительной вероятностью γ находятся не менее p % генеральной совокупности
Выброс	Наблюдение, существенно отклоняющееся от выбранной регрессионной модели
Влиятельное	Наблюдение, исключение которого из выборки приведет к
наблюдение	существенному изменению параметров регрессионной модели

4 Сокращения и обозначения

Сокращение и	
обозначение	Значение
MP	Методические рекомендации
АП-33	Авиационные правила. Часть 33
EAD 22	Federal Aviation Rules. Part 33 (англ.) – Федеральные авиационные
FAR-33	правила (документ FAA)
МЦУ	Малоцикловая усталость
МнЦУ	Многоцикловая усталость
МНК	Метод наименьших квадратов
ММП	Метод максимального правдоподобия
СКО	Среднее квадратическое отклонение
3Δ	размах деформаций в цикле при испытаниях в условиях жесткого
Δε	цикла, %
σ_{max}	максимальные напряжения в цикле при испытаниях в условиях мягкого
max	цикла, МПа (кгс/мм 2)
σ_a	амплитудные напряжения в цикле при испытаниях в условиях мягкого
	цикла, МПа (кгс/мм²)
N_f	число испытательных циклов до окончания испытания
$(\Delta \varepsilon)_i$	размах деформаций в цикле при испытаниях в условиях «жесткого»
	цикла образца с номером i , %
$(N_f)_i$	число испытательных циклов до окончания испытания образца с
(11)1	номером і, %
σ_B	предел временной прочности, МПа (кгс/мм ²)
ψ	коэффициент поперечного сужения
α	уровень значимости, принимаемый при проверке статистической
	гипотезы
T	температура, °С
R_{ϵ}	коэффициент асимметрии по деформациям при жестком циклическом
3-1-8	нагружении
R_{σ}	коэффициент асимметрии по напряжениям при мягком циклическом
	нагружении

5 Формулировки основного и связанных параграфов отечественных Норм летной годности

Основным параграфом АП-33 [1], для подтверждения которого могут применяться данные методические рекомендации, является параграф 33.15 «Материалы». Связанным с параграфом 33.15 является параграф 33.70 «Основные детали двигателя, ресурс которых устанавливается в циклах».

5.1 Формулировка основного параграфа

В соответствии с параграфом 33.15 «Материалы» АП-33 [1]:

Пригодность и долговечность материалов, используемых для изготовления деталей двигателя, его систем и агрегатов, должны:

- (а) Устанавливаться на основании опыта использования и/или результатов испытаний с учетом условий работы материалов в двигателе; и
- (b) Соответствовать действующим стандартам, которые гарантируют прочностные и другие свойства материалов, принятые при проектировании. Принимаемые при расчетах прочности значения характеристик материала должны соответствовать статистически обоснованным минимальным значениям характеристик, реализуемых в детали (заготовке детали):
- (1*) Оцениваться с учетом влияния окружающих условий, ожидаемых в эксплуатации, технологических особенностей изготовления деталей (поверхностное упрочнение, дополнительная термическая обработка и др.).
- (2*) Прочностные характеристики материалов должны определяться на основании достаточного количества испытаний, позволяющего установить статистически обоснованные расчетные значения.
- (а*) Обеспечивать там, где возможно, защиту двигателя от коррозии без использования внутренних и внешних ингибиторов коррозии.

Р соотрататрии с параграфом 22.70 «Основи с натани пригатана расура кото

В соответствии с параграфом 33.70 «Основные детали двигателя, ресурс которых устанавливается в циклах» АП-33 [1]:

С помощью одобренных Уполномоченным органом процедур должны быть установлены эксплуатационные ограничения, которые определяют максимально допустимое количество полетных циклов для каждой основной детали двигателя, ресурс которой устанавливается в циклах. Заявителю следует установить целостность каждой основной детали, ресурс которой устанавливается в циклах, с помощью:

(а) Инженерно-технического плана, который содержит шаги, требуемые для обеспечения того, что каждая основная деталь двигателя, ресурс которой устанавливается в циклах, изымается из эксплуатации при достижении одобренного ресурса до того, как могут наступить опасные, связанные с двигателем, последствия. Эти шаги включают обоснованный расчет, испытание или опыт эксплуатации, которые гарантирует, что сочетание нагрузок, свойств материалов, влияния условий окружающей среды и рабочих условий, включая воздействие других деталей двигателя на перечисленные параметры, достаточно хорошо известно или предсказуемо, чтобы можно было установить и поддерживать эксплуатационные ограничения для каждой основной детали двигателя, ресурс которой устанавливается в циклах.

6 Формулировки основного и связанных параграфов зарубежных Норм летной годности

В Нормах летной годности США FAR-33 основным параграфом, соответствующим параграфу 33.15 АП-33 «Материалы», является п. 33.15 «Materials» FAR-33 [2]:

FAR-33 § 33.15 Materials:	FAR-33 § 33.15 Материалы:			
The suitability and durability of	Пригодность и долговечность			
materials used in the engine must –	материалов, используемых в двигателе должны			
Be established on the basis of experience				
or tests; and	Устанавливаться на основе опыта или			
Conform to approved specifications	испытаний; и			
(such as industry or military	Соответствовать утвержденным спецификациям			
specifications) that ensure their having	(таким как отраслевые или военные			
the strength and other properties assumed	спецификации), которые обеспечивают их			
in the design data.	прочность и другие свойства, принятые при			
	проектировании			

В Нормах летной годности Европейского агентства авиационной безопасности основным параграфом, соответствующим параграфу 33.15 «Материалы», является СS-Е 70 «Materials and Manufacturing Methods» (a) [3]:

CS-E 70 Materials and	CS-E 70 Материалы и технологии
Manufacturing Methods	изготовления
(See AMC E 70)	(См. AMC E 70)
The suitability and durability of materials	Пригодность и долговечность материалов,
used in the Engine must be established on	используемых в двигателе, должна быть
the basis of experience or tests. The	установлена на основе опыта или испытаний.
assumed design values of properties of	Принятые при проектировании свойства
materials must be suitably related to the	материалов должны быть соответствующим
minimum properties stated in the material	образом связаны с минимальными свойствами,
specification.	указанными в спецификации материала.

Сравнение формулировок связанного параграфа 33.70 «Основные детали, ресурс которых устанавливается в циклах» АП-33, аналогичного параграфу 33.70 «Engine life-limited parts» и CS-E 515 «Engine critical parts» показывает их идентичность.

7 Требования к объему испытаний

Требования к объему испытаний для построения средней и базисных усталостных кривых заключаются в требовании к количеству уровней нагрузки, количеству испытаний на каждом уровне и общему объему испытаний.

Количество уровней нагрузки должно быть не менее 3 (трех) и при этом хотя бы на единицу больше числа параметров регрессионной модели усталостной кривой, которая будет применяться для обработки данных. Рекомендуется испытывать не менее 3 образцов на каждом уровне нагрузки.

Для обоснования минимально необходимого общего объема испытаний при построении средней усталостной кривой следует использовать формулу определения объема выборки для получения оценки СКО случайной величины [5], применяя ее к СКО остатков регрессии:

$$n - k + 1 = 1.5 + \frac{(u_{1 - \alpha/2})^2}{2(\Delta_{\sigma})^2},$$
(1)

где n — число образцов, доведенных до разрушения; k — число параметров регрессионной модели; $u_{1-\alpha/2}$ — квантиль стандартного нормального распределения уровня $1-\alpha/2$ (таблица 1 приложения A); Δ_{σ} — максимальная относительная ошибка при оценке СКО остатков регрессии. Минимальное рекомендованное значение Δ_{σ} составляет 0,3, максимальный рекомендованный уровень значимости $\alpha=0,1$. Полученное согласно формуле (1) значение n следует округлить в большую сторону. Оценка справедлива при $n-k+1\geq 15$.

Общий объем испытаний для построения базисных усталостных кривых материалов основных деталей — не менее 36 образцов, доведенных до разрушения, особо ответственных деталей — не менее 18 образцов, доведенных до разрушения. Использование меньшего числа образцов допустимо с учетом сохранения обозначенных выше требований к количеству уровней нагрузки и числу образцов, испытанных на каждом уровне нагрузки, при условии использования уточненного толерантного коэффициента, рассчитанного с учетом объема испытаний и числа коэффициентов k регрессионной модели (раздел 13).

Рекомендованное количество образцов при испытаниях в области до 10^5 циклов – 60, до 10^7 циклов – 80

8 Регрессионные модели усталостных кривых

В общем случае регрессионная модель [8, 9] имеет вид

$$y = \Psi(A_1, ... A_k, x) + \xi, \tag{2}$$

где $\Psi(A_1,...A_k,x)$ – функция регрессии; x – независимая переменная, не являющаяся случайной величиной; у - зависимая переменная, являющаяся случайной величиной, распределенной нормально с математическим ожиданием $\hat{y} = \Psi(A_1,...A_k,x)$ и некоторой постоянной не зависящей от x дисперсией σ^2 ; ξ – случайное возмущение y относительно функции регрессии; $A_1,...A_k$ – параметры регрессионной модели.

При этом ξ является случайной величиной, распределенной нормально с нулевым математическим ожиданием и дисперсией σ^2 , и возмущения ξ_i и ξ_j , $i=1,..\tilde{n}, j=1,..\tilde{n}, i\neq j$ не коррелированы, \tilde{n} — объем выборки $\{(x)_i$, $(y)_i\}$, $i=1..\tilde{n}$. Оценки $\tilde{A}_1,..\tilde{A}_k$ параметров $A_1,...A_k$ регрессионной модели получают на основании элементов выборки $\{(x)_i, (y)_i\}$.

Регрессионные модели с функцией регрессии вида

$$\Psi(A_1,..A_k,x) = \sum_{j=1}^k A_j \Psi_j(x),$$
(3)

называют линейными по параметрам.

8.1 Линейные по параметрам модели

Применительно к моделям усталостных кривых в предположении о нормальном распределении $\lg(N_f)$ [4, 6, 7] как правило полагают $y=\lg(N_f)$, а $x=\Delta \varepsilon$ для жесткого цикла и $x = \sigma_{max}$ или $x = \sigma_a$ для мягкого цикла. Также могут быть рассмотрены модели, для которых $y=\Delta \varepsilon$ для жесткого цикла и $y=\sigma_{max}$ или $y=\sigma_a$ для мягкого цикла, а $x=N_f$. Далее будем рассматривать все процедуры в обозначениях жесткого цикла, подразумевая, что они могут быть распространены на мягкий цикл.

Методы классического регрессионного анализа, позволяющие диагностику моделей и определять влиятельные наблюдения и выбросы, предназначены для регрессионных моделей, линейных по параметрам [8, 9]. В связи с этим такие модели являются более предпочтительными.

Наиболее широко используемыми являются степенная [4, 6, 7, экспоненциальная [4, 6] модели. В таблице 1 приведены необходимые преобразования коэффициентов для линеаризации этих моделей.

Далее будем рассматривать степенную модель в виде

$$\lg(N_f) = A_1 + A_2 \lg(\Delta \varepsilon) + \xi. \tag{4}$$

а экспоненциальную в виде

$$\lg(N_f) = A_1 + A_2 \Delta \varepsilon + \xi, \tag{5}$$

где A_1 и A_2 — неизвестные коэффициенты. Модели (4) и (5) являются частными случаями полиномиальных моделей, линейных по коэффициентам.

Таблица 1. – Линеаризация степенной и экспоненциальной моделей

Исходная модель	Преобразование коэффициентов	Линеаризованная модель
Степенная	$A_1 = \lg(B_1), \ A_2 = B_2$	$y = A_1 + A_2 x + \xi,$
$\widehat{N_f} = B_1 \cdot (\Delta \varepsilon)^{B_2}$		$y = \lg(N_f), x = \lg(\Delta \varepsilon)$
Экспоненциальная	$A_1 = \lg(B_3), \ A_2 = -B_4 \lg(e)$	$y = A_1 + A_2 x + \xi,$
$\widehat{N_f} = B_3 \cdot e^{-B_4 \Delta \varepsilon}$		$y = \lg(N_f), x = \Delta \varepsilon$

Допустимо [4] использовать полиномиальную модель, линейную по параметрам $A_1,...A_k$ и при k>2:

$$\lg(N_f) = A_1 + A_2 \lg(\Delta \varepsilon) + A_3 (\lg(\Delta \varepsilon))^2 + \dots + A_k (\lg(\Delta \varepsilon))^{k-1} + \xi, \tag{6}$$

или

$$\lg(N_f) = A_1 + A_2 \Delta \varepsilon + A_3 (\Delta \varepsilon)^2 + \dots + A_k (\Delta \varepsilon)^{k-1} + \xi.$$
 (7)

8.2 Нелинейные по параметрам модели

Среди нелинейных по параметрам моделей рассмотрена степенная модель с пределом выносливости [6, 7, 10], билинейная модель [10] и модель Коффина-Мэнсона-Басквина [11, 12].

Степенная модель с горизонтальной асимптотой – модификация модели (4) путем добавления третьего коэффициента A_3 :

$$\lg(N_f) = A_1 + A_2 \lg(\Delta \varepsilon - A_3) + \xi. \tag{8}$$

Уравнение билинейной модели имеет вид

$$\Delta \varepsilon = A_1 (lgN_f - lgA_3) \cdot H(A_3 - N_f) + A_2 (lgA_3 - lgN_f) \cdot H(N_f - A_3) + A_4 + \xi,$$
 (9) где A_1, A_2, A_3 и A_4 – параметры модели, $H(x)$ – функция Хевисайда.

Билинейная модель может оказаться близкой к оптимальной при наличии явного «излома» на кривой усталости, построенной в координатах $(\lg(N_f), \Delta \varepsilon)$. Точка «излома» имеет координаты (A_3, A_4) , параметры A_1 и A_2 определяют углы наклона линейных участков. Если наблюдается выход на горизонтальный участок справа, можно положить параметр A_2 равным 0.

Модель Коффина-Мэнсона-Басквина имеет вид

$$\Delta \varepsilon = \frac{2\sigma_f'}{E} (2N_f)^b + 2\varepsilon_f' (2N_f)^c + \xi$$

где E – модуль упругости, σ_f' , ε_f' , b и c – параметры модели. В классическом варианте модели

Коффина-Мэнсона [13]
$$b=-0.12$$
; $c=-0.6$; $\sigma_f'=\frac{3.5\sigma_B}{2^{1+b}},\ \epsilon_f'=\frac{D^{0.6}}{2^{1+c}},\ D=\ln\frac{1}{1-\psi}.$

Без привязки к характеристиками статических испытаний будем рассматривать нелинейную модель с четырьмя коэффициентами $A_1,\,A_2,\,A_3$ и A_4 вида

$$\Delta \varepsilon = A_1 (N_f)^{A_3} + A_2 (N_f)^{A_4} + \xi. \tag{10}$$

Необходимо отметить, что область применимости регрессионной модели ограничена областью, в которой находятся значения независимой переменной x для выборки, по которой была проведена оценка параметров регрессионной модели.

9 Основные этапы статистического анализа результатов испытаний на МЦУ и МнЦУ

Пусть испытано n образцов на m уровнях нагрузки. Для статистической обработки результатов испытаний по каждому испытанному образцу с номером i, i = 1,...n должна быть известна следующая информация:

- $(\Delta \varepsilon)_i$ размах деформаций в цикле;
- $(N_f)_i$ число испытательных циклов до окончания испытания;
- информация об окончании испытания является ли образец доведенным до разрушения или отстоявшим базу;
- информация о проведении испытания, позволяющая провести экспертную оценку отсутствия грубых ошибок.

Следует упорядочить результаты испытаний, сформировав выборку наблюдений для образцов, доведенных до разрушения

$$X_{rup} = \left\{ (\Delta \varepsilon)_i , (N_f)_i \right\}, \ i = 1,..n$$
 (11)

где n — число образцов, доведенных до разрушения (объем выборки X_{rup}), и выборку наблюдений для образцов, отстоявших базу

$$X_{base} = \left\{ (\Delta \varepsilon)_i, (N_f)_i \right\}, i = n + 1, \dots n_{all}.$$
(12)

При этом число образцов, отстоявших базу, равно $n_{base} = n_{all} - n$ (объем выборки X_{base}).

Обработка результатов испытаний осуществляется с целью построения средней и базисных усталостных кривых. Обработка и анализ результатов испытаний на МЦУ включает в себя подготовку данных для формирования выборок (11) и (12), проверку их достаточности (см. раздел 7), построение средней кривой на основе одной из моделей усталостных кривых (4)-(10) и построение базисных кривых. Блок-схема приведена на рисунке 1.

Этап «Выбор модели усталостной кривой» является наиболее трудоемким. Анализ следует начинать с определения параметров (раздел 10.1) и диагностики линейных моделей (раздел 11) (4) и (5) для выборки образцов, доведенных до разрушения X_{rup} .

Диагностика линейной моделей включает следующие этапы:

- анализ остатков регрессии: графический (частотная гистограмма распределения остатков, график квантилей, график зависимости остатков и их модулей от независимой переменной) и формальный (проверка на нормальность по критериям Шапиро-Уилка или Андерсона-Дарлинга, проверка однородности дисперсии по критериям Уайта и Бреуша-Пагана, проверка на автокорреляцию по тесту Дарбина-Уотсона) (разделы 11.1, 11.2, 11.4);

- поиск влиятельных наблюдений (оценка величин диагональных элементов матрицы проекций, стандартизированных и стъюдентизированных остатков) и выбросов (оценка дистанции Кука и подобных ей параметров) (раздел 11.6);
- проверка адекватности модели по тесту Фишера (раздел 11.5) для отношения дисперсии вокруг линии регрессии к осредненной выборочной условной дисперсии (при успешном прохождении проверок на нормальность, автокорреляцию и однородность дисперсии остатков).

Блок-схема диагностики и выбора линейной модели представлена на рисунке 2.

Рисунок 1. Основные этапы обработки и анализа результатов испытаний

Следует отметить, что информация о влиятельных наблюдениях и выбросах не должна служить достаточным основанием для исключения наблюдений из выборки. Наблюдения, определенные как выбросы путем формального теста, должны пройти экспертную оценку и могут быть исключены из рассмотрения только при подтверждении грубой ошибки в ходе проведения испытаний или на этапе передачи данных.

В случае прохождения всех проверок моделями (4) и (5) следует выбрать модель, обладающую наименьшим СКО.

При обработке результатов испытаний в широком диапазоне долговечности можно столкнуться с проблемой неоднородности дисперсии – разброс логарифма долговечности увеличивается с уменьшением нагрузки. Эта проблема может быть решена при помощи процедуры взвешивания выборки. В этом случае при построении базисных кривых будет

необходимо учесть зависимость дисперсии от уровня нагрузки (раздел 11.3).

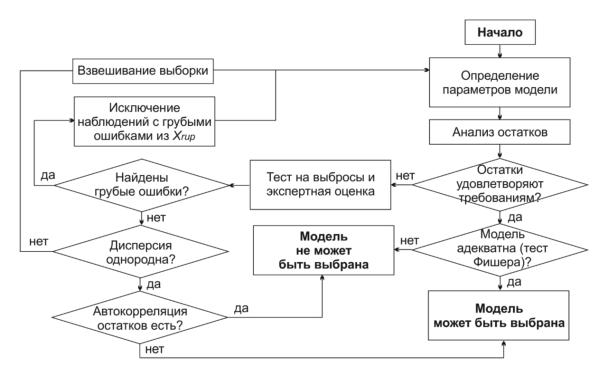


Рисунок 2. Диагностика линейной модели

Основными факторами, указывающими на необходимость отказа от линейных моделей (4) и (5) в пользу моделей (6) и (7) или нелинейных моделей (8)-(10), служит значимая автокорреляция остатков регрессии или не прохождение теста Фишера. По графику зависимости остатков от независимой переменной можно сделать предположение о верной структуре модели.

Так как модели (6) и (7) обладают всеми преимуществами линейных моделей, в случае отказа от моделей (4) и (5) следует сначала перейти к рассмотрению полиномов второй (k=3) и третьей (k=4) степеней. В случае S-образной кривой предпочтение следует отдавать полиному третьей (k=4) степени.

Общие методов диагностики нелинейных моделей не существует. Основным инструментом оценки качества нелинейной регрессионной модели является анализ остатков.

Сравнение моделей, успешно прошедших диагностику (раздел 12), можно проводить на основе:

- СКО (для моделей с одинаковой зависимой переменной);
- информационного критерия Акаике (для моделей с одинаковой зависимой переменной);
- коэффициента детерминации (для моделей с любой зависимой переменной, но одинаковым числом параметров);

- скорректированного коэффициента детерминации (для полиномиальных моделей с разным числом параметров).

При этом предпочтение следует отдавать моделям (4) и (5) в виду их линейности по параметрам и простоты.

Объединять выборки X_{rup} и X_{base} , считая отстоявшие базу образцы разрушенными, нельзя. Как правило, достаточно проводить все процедуры обработки для выборки X_{rup} .

Учет отстоявших базу образцов (раздел 10.3) рекомендуется проводить с целью уточнения расчетных оценок в области циклической долговечности $>10^5$ только при использовании нелинейных моделей (8)-(10) и при существенном объеме выборки X_{base} , а именно в следующих случаях:

- отстоявшие базу образцы имеются на двух или более уровнях нагрузки;
- отстоявшие базу образцы имеются только на минимальном уровне нагрузки и объем выборки X_{base} превышает число образцов, доведенных до разрушения на минимальном уровне нагрузки (менее 50 % образцов, испытанных на минимальном уровне нагрузке, доведены до разрушения).

Расчетные характеристики в области циклической долговечности $>10^5$ при учете X_{base} будут менее консервативны. Общий алгоритм построения средней усталостной кривой приведен на рисунке 3.

Рисунок 3. Построение средней усталостной кривой

Рекомендуемый уровень значимости α для статистических критериев, используемых в методике, составляет 0,05.

10 Определение параметров регрессионных моделей усталостных кривых

Для определения параметров линейных и нелинейных моделей по выборке X_{rup} используют линейный и нелинейный МНК соответственно. Определение параметров моделей с учетом выборки X_{base} следует производить ММП с введением функции выживаемости.

10.1 Линейные по параметрам модели

Искомые оценки $\widetilde{A}_1,...,\widetilde{A}_k$ параметров $A_1,...,A_k$ моделей (4)-(7) определяют, решая задачу минимизации функции k переменных

$$S(\widetilde{A}_1,...,\widetilde{A}_k) = \sum_{i=1}^n \left(\lg\left((N_f)_i \right) - \left(\widetilde{A}_1 + \widetilde{A}_2(x)_i + ... + \widetilde{A}_k((x)_i)^{k-1} \right) \right)^2 \to min$$
(13)

где $(x)_i = \lg((\Delta \varepsilon)_i)$ для моделей (4), (6) и $(x)_i = (\Delta \varepsilon)_i$ для моделей (5), (7), i = 1,...n. Для моделей (4) и (5) k = 2.

Задачу (13) можно решить без применения алгоритмов численной оптимизации. Вектор-столбец искомых оценок параметров представим в виде [8, 9]

$$\begin{pmatrix} \widetilde{A}_1 \\ \dots \\ \widetilde{A}_k \end{pmatrix} = \left(X^T X \right)^{-1} X^T \begin{pmatrix} \lg \left((N_f)_1 \right) \\ \dots \\ \lg \left((N_f)_n \right) \end{pmatrix}, \tag{14}$$

где X – матрица регрессоров размерности $n \times k$, имеющая вид

$$X = \begin{pmatrix} 1 & \cdots & ((x)_1)^{k-1} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & ((x)_n)^{k-1} \end{pmatrix}. \tag{15}$$

Для диагностики модели после определения оценок параметров следует рассчитать остатки регрессии

$$R_{i} = \lg((N_{f})_{i}) - (\widetilde{A}_{1} + \widetilde{A}_{2}(x)_{i} + ... + \widetilde{A}_{k}((x)_{i})^{k-1}), i = 1,..n,$$
(16)

СКО регрессии

$$SD = \sqrt{\frac{1}{n-k} \sum_{i=1}^{n} R_i^2},$$
(17)

и нормированные остатки регрессии

$$SR_i = \frac{R_i}{SD}, \ i = 1,..n.$$
 (18)

Искомые оценки $\widetilde{A}_1,...,\widetilde{A}_k$ параметров $A_1,...,A_k$ моделей (8)-(10) определяют, решая аналогичную (13) задачу минимизации функции k переменных. В общем виде для регрессионной модели (2) можно записать

$$S(\widetilde{A}_1,...,\widetilde{A}_k) = \sum_{i=1}^n \left((y)_i - \Psi\left(\widetilde{A}_1,...,\widetilde{A}_k,(x)_i\right) \right)^2 \to min.$$
(19)

Для решения задачи (19) рекомендуется использовать алгоритмы нелинейной оптимизации, реализованные в готовых пакетах программ.

Рекомендуется использовать алгоритмы глобальной оптимизации (варианты эволюционных алгоритмов, например, алгоритм дифференциальной эволюции) с последующим уточнением решения классическими градиентными методами [10].

Важным аспектом здесь является выбор начального приближения $\widetilde{A_1^{(0)}},...,\widetilde{A_k^{(0)}}$ искомых оценок параметров $\widetilde{A_1},...,\widetilde{A_k}$ и ограничений на значения параметров. В приложении Б приведены целевые функции, ограничения на параметры и рекомендуемые начальные приближения для моделей (8)-(10).

Остатки регрессии и СКО регрессии вычисляют по формулам (16) и (17).

10.3 Нелинейные по параметрам модели для выборки с учетом отстоявших базу образцов

Выборочный метод состоит в определении свойств генеральной совокупности по выборке — совокупности наблюдений, которую удалось получить в результате испытаний. Естественно считать эту выборку наиболее вероятной, что соответствует основной идее ММП: для определения неизвестных параметров модели следует составить функцию, выражающую вероятность совместного появления результатов выборки, — функцию максимального правдоподобия L.

Для регрессионной модели вида (2) в предположении о нормальном распределении y при заданном значении x и требовании соблюдения нулевого математического ожидания и постоянной дисперсии случайных возмущений относительно функции регрессии L принимает вид [7]

$$L(A_1,..A_k,\sigma) = \prod_{i=1}^{\tilde{n}} f((y)_i - \Psi(A_1,..A_k,(x)_i),\sigma),$$
(20)

где $f(\xi,\sigma)$ – плотность вероятности нормального распределения случайной величины ξ с нулевым математическим ожиданием и дисперсией σ^2

$$f(\xi,0,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\xi^2}{2\sigma^2}}.$$
 (21)

В качестве оценок \widetilde{A}_1 ... \widetilde{A}_k , $\widetilde{\sigma}$ неизвестных параметров модели и σ принимают значения, которые максимизируют L. В силу того, что удобнее работать с суммой, а не с произведением, обычно рассматривают задачу максимизации логарифма функции максимального правдоподобия или же задачу минимизации функции обратного знака

$$\Lambda\left(\widetilde{A}_{1},...\widetilde{A}_{k},\widetilde{\sigma}\right) = -\lg\left(L\left(\widetilde{A}_{1},...\widetilde{A}_{k},\widetilde{\sigma}\right)\right) = \\
= -\sum_{i=1}^{n} \lg\left(f\left(\left(y\right)_{i} - \Psi\left(\widetilde{A}_{1},...\widetilde{A}_{k},\left(x\right)_{i}\right),\widetilde{\sigma}\right)\right) \to min.$$
(22)

Для учета образцов, отстоявших базу, оценку параметров модели независимо от ее вида проводят на основе ММП с введением функции выживаемости [7, 10]. Для этого формируют модифицированную функцию максимального правдоподобия, добавляя к произведению, отражающему вероятность наблюдения выборки X_{rup} , n_{base} множителей вида

$$1 - F((y)_{i} - \Psi(A_{1}, ..., A_{k}, (x)_{i}), \sigma), i = n + 1, ..., n_{all},$$
(23)

где $F(\xi,\sigma)$ — функция нормального распределения случайной величины ξ с нулевым математическим ожиданием и дисперсией σ^2 :

$$F(\xi,0,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\xi} e^{-\frac{x^2}{2\sigma^2}} dx.$$
 (24)

Множители (23) отражают вероятность того, что циклическая долговечность образца, отстоявшего базу, превышает номер цикла, на котором образец был снят.

В этом случае функцию, подлежащую минимизации, можно записать следующим образом [10]:

$$\Lambda_{base}(\widetilde{A}_1,...\widetilde{A}_k,\widetilde{\sigma}) = -\sum_{i=1}^n \left(\delta_i \cdot \lg \left(f\left((y)_i - \Psi(\widetilde{A}_1,...\widetilde{A}_k,(x)_i),\widetilde{\sigma} \right) \right) + \right)$$
(25)

$$+ (1 - \delta_{i}) \cdot \lg(1 - F((y)_{i} - \Psi(\widetilde{A}_{1}, ...\widetilde{A}_{k}, (x)_{i}), \widetilde{\sigma}))) \rightarrow min,$$

$$\delta_{i} = \begin{cases} 1, & 1 \leq i \leq n, \\ 0, & n < i \leq n_{all}. \end{cases}$$
(26)

Приближенная оценка СКО регрессии в этом случае может быть вычислена согласно формуле [10]

$$SD \approx \sqrt{\frac{n_{all} \cdot \tilde{\sigma}^2}{n_{all} - k}}$$
 (27)

11 Диагностика линейных регрессионных моделей усталостных кривых

Необходимым этапом диагностики регрессионных моделей является анализ остатков регрессии (16) [7-9]. Нормальность, однородность и отсутствие автокорреляции остатков следуют из предпосылок, положенных в основу математического аппарата классического регрессионного анализа и выраженных в требованиях к случайным возмущениям ξ модели (2).

11.1 Проверка распределения остатков регрессии на нормальность

Проверка нормальности распределения остатков регрессии в первую очередь осуществляется путем визуального анализа частотной гистограммы, графика квантилей и графика зависимости остатков от независимой переменной.

В том случае, если гистограмма частот имеет колоколообразный и симметричный вид, можно сделать вывод о том, что распределение остатков не противоречит нормальному закону. Однако вид гистограммы частот существенно зависит от шага гистограммы, что особенно заметно при небольших выборках.

Более удобным способом визуального анализа является график квантилей (QQ-Plot) [7, 9, 10, 14]. Для его построения по горизонтальной оси откладывают квантили стандартного нормального распределения, а по вертикальной оси – квантили эмпирического распределения нормированной выборки остатков. При нормальном распределении остатков регрессии точки на графике квантилей должны встраиваться в прямую линию, исходящую под углом 45° из левого нижнего угла.

На графике зависимости остатков от независимой переменной в случае нормального распределения не должно быть заметно тенденции, точки должны распределены вдоль горизонтальной оси с постоянным разбросом.

В связи с субъективностью визуального анализа следует рассматривать также формальные тесты проверки на нормальность: критерий Шапиро-Уилка [15] и критерий Андерсона-Дарлинга [16]. Нулевая гипотеза тестов проверки на нормальность может быть сформулирована следующим образом: «выборка происходит из совокупности, имеющей нормальное распределение».

Критерий Шапиро-Уилка применим для выборок объема $n \le 50$ и обладает большей мощьностью, чем тест Андерсона-Дарлинга для различных классов распределений [5].

Остатки R_i располагают в вариационный ряд $\{\tilde{R}_i\}$, i=1,...n, после чего вычисляют статистику

$$W = \frac{\left(\sum_{i=1}^{s} a_{n-i+1} (\tilde{R}_{n-i+1} - \tilde{R}_{i})\right)^{2}}{\sum_{i=1}^{n} \left(R_{i} - \overline{R}\right)^{2}},$$
28)

где $\overline{R} = \frac{\sum_{i=1}^n R_i}{n}$; s = n/2 при чётном n и s = (n-1)/2 при нечётном n; a_{n-i+1} , i = 1,...s — табличное значение (см. таблицу 2 приложения A). При выполнении неравенства

$$W \ge W_{\alpha}(n),\tag{29}$$

где $W_{\alpha}(n)$ — критическое значение, определяемое по таблице 3 приложения A, можно заключить, что имеющиеся данные не противоречат гипотезе о нормальном распределении остатков на уровне значимости α . Рекомендованное значение α составляет 0,05.

Критерий Андерсона-Дарлинга рекомендуется применять для выборок объема n > 50 в связи со сложностью применения критерия Шапиро-Уилка. Вычисляют статистику

$$S = -n + \sum_{i=1}^{n} \left(\frac{1-2i}{n} \left(\ln \left(F_i \right) + \ln \left(1 - F_{n+1-i} \right) \right) \right), \tag{30}$$

где $F_i = F\left(\frac{\tilde{R}_i - \overline{R}}{SD}, 0, 1\right)$ — функция нормального распределения (24). При выполнении неравенства [17]

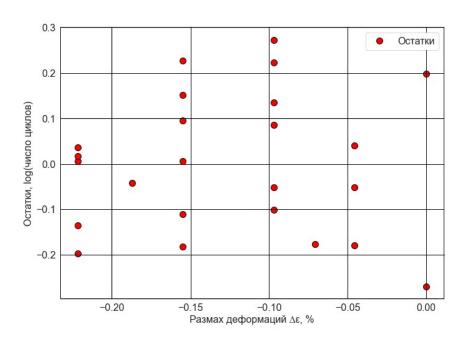
$$S \le 0.752 / \left(1 + \frac{0.75}{n} + \frac{2.25}{n^2}\right),\tag{31}$$

на уровне значимости 0,05 можно утверждать, что имеющиеся данные не противоречат гипотезе о нормальном распределении остатков.

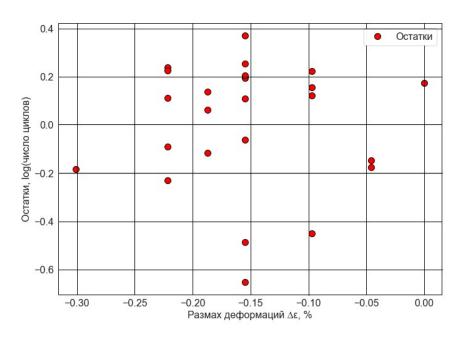
Рассмотрим пример анализа распределения остатков. В таблице 2 приведены две выборки №1 и №2, составленные по результатам испытаний никелевого сплава, $R_{\varepsilon}=0$. Все испытанные образцы доведены до разрушения. В качестве примера применим экспоненциальную модель (5):

- 1. Для каждой выборки формируем матрицу регрессоров (15);
- 2. По формуле (14) вычисляем оценки параметров \widetilde{A}_1 и \widetilde{A}_2 модели (5) (таблица 2);
- 3. По формуле (16) вычисляем остатки регрессии R_i (таблица 2);
- 4. Строим графики зависимости остатков от Δε (рисунок 4). Оцениваем визуально: нет ли тенденции, постоянен ли разброс данных около горизонтальной оси;
 - 5. Располагаем остатки в вариационный ряд \tilde{R}_i (таблица 3);
- 6. Вычисляем SD согласно (17) (см. табл. 2) и нормированные остатки SR_i по формуле (18).
- 7. Для каждого эмпирического значения квантили SR_i вычисляем его уровень, определяем квантиль найденного уровня для стандартного нормального распределения, и формируем график квантилей, откладывая по горизонтальной оси SR_i , а по вертикальной

– соответствующие им квантили стандартного нормального распределения (рисунок 5). Оцениваем визуально: лежат ли точки на красной линии. Для выборки №1 точки расположены вдоль линии, что подтверждает нормальность распределения остатков, для выборки № 2 — существенно отклоняются, что говорит об отсутствии нормального распределения.


Таблица 2. Результаты испытаний образцов из никелевого сплава, параметры регрессионной модели (5) и остатки регрессии

Выборка №1				Выборка №2			
	\widetilde{A}_1	\widetilde{A}	2		\widetilde{A}_1		\widetilde{A}_2
	6,918	-3,2	1		7,008	-3,	6624
№	Δε, %	N_f	Остатки регрессии R_i	No	Δε, %	N_f	Остатки регрессии R_i
1	0,6	94285	0,036	1	0,5	103080	-0,183
2	0,6	63600	-0,135	2	0,6	87931	0,111
3	0,6	87943	0,006	3	0,6	118420	0,240
4	0,6	90199	0,017	4	0,6	55437	-0,090
5	0,6	55154	-0,197	5	0,6	114512	0,225
6	0,65	53845	-0,042	6	0,6	40171	-0,230
7	0,7	50620	0,096	7	0,65	61804	0,139
8	0,7	68603	0,228	8	0,65	34332	-0,117
9	0,7	41125	0,006	9	0,65	51953	0,063
10	0,7	26682	-0,182	10	0,7	38152	0,110
11	0,7	31446	-0,111	11	0,7	9637	-0,487
12	0,7	57613	0,152	12	0,7	46390	0,195
13	0,8	25921	0,135	13	0,7	6588	-0,652
14	0,8	35601	0,273	14	0,7	53152	0,254
15	0,8	15074	-0,100	15	0,7	69519	0,371
16	0,8	16863	-0,052	16	0,7	47330	0,204
17	0,8	23157	0,086	17	0,7	25709	-0,061
18	0,8	31785	0,224	18	0,8	4551	-0,451
19	0,85	8662	-0,176	19	0,8	21512	0,224
20	0,9	5876	-0,180	20	0,8	16999	0,122
21	0,9	7902	-0,051	21	0,8	18349	0,155
22	0,9	9764	0,041	22	0,9	3982	-0,146
23	1	6558	0,198	23	0,9	3730	-0,175
24	1	2231	-0,270	24	1	3622	0,175
SD		1	0,156	SD		1	0,269


8. Так как объемы выборок №1 и №2 не превышают 50, в качестве формального

критерия используем критерий Шапиро-Уилка. Для обоих значений температур $\overline{R} = 0$, s = 12. Значения остальных величин, входящих в формулу (28), приведены в таблице 3.

9. Вычисляем значения статистики W, по таблице 3 приложения A определяем критическое значение $W_{0,05}(24) = 0.916$ (таблица 4). Делаем вывод: если условие (29) выполняется, остаемся в рамках гипотезы о нормальности распределения.

а) Выборка №1

б) Выборка №2

Рисунок 4. Визуальная проверка распределения остатков на нормальность: графики зависимости остатков

регрессии от $\Delta\epsilon$

Таблица 3. Формальная проверка распределения остатков на нормальность: данные для вычисления статистики W

Выборка №1												
i	1	2	3	4	5	6	7	8	9	10	11	12
\tilde{R}_i	-0,270	-0,197	-0,182	-0,180	-0,176	-0,135	-0,111	-0,1	-0,052	-0,051	-0,042	0,006
i	13	14	15	16	17	18	19	20	21	22	23	24
\tilde{R}_i	0,006	0,017	0,036	0,041	0,086	0,096	0,135	0,152	0,198	0,224	0,228	0,273
i	1	2	3	4	5	6	7	8	9	10	11	12
$\tilde{R}_{25-i} - \tilde{R}_i$	0,543	0,425	0,406	0,378	0,328	0,270	0,197	0,186	0,093	0,087	0,059	0
a_{25-i}	0,4493	0,3098	0,2554	0,2145	0,1807	0,1512	0,1245	0,0997	0,0764	0,0539	0,0321	0,0107
					Выбој	рка №2						
i	1	2	3	4	5	6	7	8	9	10	11	12
\tilde{R}_i	-0,652	-0,487	-0,451	-0,230	-0,182	-0,175	-0,146	-0,117	-0,090	-0,061	0,063	0,110
i	13	14	15	16	17	18	19	20	21	22	23	24
\tilde{R}_i	0,111	0,122	0,139	0,155	0,175	0,195	0,204	0,224	0,225	0,240	0,254	0,371
i	1	2	3	4	5	6	7	8	9	10	11	12
$\tilde{R}_{25-i} - \tilde{R}_i$	1,023	0,741	0,691	0,455	0,406	0,379	0,341	0,292	0,245	0,200	0,059	-0,001
a_{25-i}	0,4493	0,3098	0,2554	0,2145	0,1807	0,1512	0,1245	0,0997	0,0764	0,0539	0,0321	0,0107

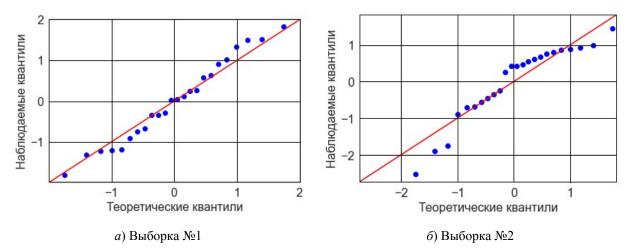


Рисунок 5. Визуальная проверка распределения остатков на нормальность: графики квантилей

Таблица 4. Формальная проверка распределения остатков на нормальность: результаты применения критерия Шапиро-Уилка

	$\left(\sum_{i=1}^{s} a_{n-i+1} (\tilde{R}_{n-i+1} - \tilde{R}_i)\right)^2$	$\sum_{i=1}^{n} \left(R_i - \overline{R} \right)^2$	W	W _{0,05} (24)	Вывод
Выборка №1	0,514	0,535	0,961		Нормальность
				0,916	не отвергнута
Выборка №2	0,433	1,592	0,272		Нормальность
					отвергнута

Для выборки №1 остатки распределены вдоль горизонтальной оси более равномерно чем для выборки №2 (см. рисунок 4). На графике квантилей для выборки №1 точки лежат

на красной прямой, проведенной под углом 45 ° из левого нижнего угла, а для выборки №2 — существенно отклоняются от указанной прямой. Гипотеза о нормальности выборки №2 отвергается путем формального тестирования на основе критерия Шапиро-Уилка. Можно заключить, что остатки регрессии для выборки №1 проходят проверку на нормальность, а для выборки №2 — не проходят.

11.2 Проверка однородности дисперсии остатков регрессии

Проверку однородности дисперсии остатков регрессии можно проводить визуально, строя зависимость остатков регрессии и их модулей от зависимой переменной, и по формальным критериям Уайта и Бреуша-Пагана [10, 18].

Неоднородность дисперсии может указывать как на неподходящую структуру модели (разброс логарифма долговечности относительно своих средних значений на разных уровнях нагрузки существенно не различается, а разброс относительно прогнозных значений модели — различается), так и на особенность самих данных (разброс логарифма долговечности относительно своего среднего значения зависит от уровня нагрузки).

Для проверки однородности по *критерию Уайта* [19] после вычисления остатков модели R_i осуществляют линейную регрессию квадратов этих остатков на все независимые переменные, их квадраты, попарные произведения и константу. Например, для модели (5) следует построить вспомогательную регрессионную модель

$$R = W_0 + W_1 \Delta \varepsilon + W_2 \Delta \varepsilon^2 + \xi, \tag{32}$$

а для полинома второй степени (7)

$$R = W_0 + W_1 \Delta \varepsilon + W_2 \Delta \varepsilon^2 + W_3 \Delta \varepsilon^3 + W_4 \Delta \varepsilon^4 + \xi.$$
(33)

Для использования критерия Уайта число уровней нагрузки должно быть как минимум на 1 больше числа параметров вспомогательной модели. Так, согласно формулам (32)-(33) для моделей (4) и (5) необходимо как минимум 4 уровня нагрузки (что должно выполняться в любом случае согласно разделу 7), для полиномов (6) и (7) второй степени – 6 уровней нагрузки и т.д.

Тогда при справедливости нулевой гипотезы об однородности остатков величина $k_w\eta^2$, где η^2 – коэффициент детерминации построенной модели (вычисляется аналогично формуле (66)), а k_w – число коэффициентов новой модели, асимптотически имеет распределение χ^2 с k_w-1 степенями свободы. Для моделей (4) и (5) в силу одной независимой переменной $k_w=3$. В случае выполнения неравенства

$$k_w \eta^2 \le \chi_{1-\alpha'}^2 \tag{34}$$

где $\chi^2_{1-\alpha}$ определяется по таблице 4 приложения A при $df=k_w-1$, следует остаться в рамках нулевой гипотезы, а в противном случае принять значимую неоднородность дисперсии.

Критерий Бреуша-Пагана [20] рекомендуется использовать в том случае, если предполагается, что дисперсия остатков зависит от некоторых дополнительных переменных z_l , l=1..q. После вычисления остатков модели R_i следует построить оценку их дисперсии в виде

$$\hat{\sigma}_{bp}^2 = \frac{1}{n} \sum_{i=1}^n R_i^2 \,. \tag{35}$$

и нормировать остатки при помощи (35). Следует построить линейную регрессионную модель квадратов нормированных остатков на z_l , l = 1..q и константу

$$\frac{R^2}{\hat{\sigma}_{bv}^2} = BP_0 + \sum_{l=1}^q BP_l z_l + \xi,$$
(36)

где BP_l , l=1..q — параметры модели (36). Следует рассматривать линейную зависимость остатков от независимой переменной исходной регрессионной модели, например, для моделей (3) и (4) $q=1, z_1=\lg(\Delta\varepsilon)$ для модели (3), $z_1=\Delta\varepsilon$ для модели (4).

Для (36) находят сумму квадратов остатков

$$RSS_{BP} = \sum_{i=1}^{n} \left(\frac{R_i^2}{\hat{\sigma}_{bp}^2} - \left(\tilde{BP}_0 + \sum_{l=1}^{q} \tilde{BP}_l(z_l)_i \right) \right)^2.$$
(37)

где \widetilde{BP}_l , l=1..q — оценки параметров модели (36). В том случае, если гипотеза об однородности дисперсии остатков верна, величина $RSS_{BP}/2$ асимптотически имеет распределение χ^2 с q степенями свободы. Аналогично критерию Уайта в случае выполнения неравенства

$$RSS_{RP}/2 \le \chi_1^2 \tag{38}$$

где $\chi^2_{1-\alpha}$ определяется по таблице 4 приложения A при df=q, следует остаться в рамках нулевой гипотезы, а в противном случае принять значимую неоднородность дисперсии. Рекомендованный уровень значимости α в тестах на однородность дисперсии составляет 0,05.

11.3 Устранение неоднородности дисперсии остатков регрессии с использованием схемы взвешивания

В том случае, если неоднородность дисперсии остатков обусловлена особенностью

самих данных, т.е. разброс логарифма долговечности относительно своего среднего значения зависит от уровня нагрузки, следует использовать схему взвешивания для устранения неоднородности. Метод основан на приближении зависимости абсолютной величины остатков от независимой переменной некоторой функцией [6, 7].

Построим линейную по коэффициентам регрессионную модель для оценки среднего значения $|\hat{R}|$ модуля остатков (16) от контролируемого параметра. Адаптируем алгоритм, используемый для модели с учетом асимметрии как фактора [7], к моделям (4)-(7). Будем считать, что среднее значение модуля остатков есть линейная функция обратной величины $\Delta \varepsilon$:

$$\frac{|\hat{R}|}{\sqrt{2/\pi}} = \sigma_0 + \sigma_1 \left(\frac{1}{\Delta \varepsilon}\right) + \xi = h(\Delta \varepsilon) + \xi, \tag{39}$$

где σ_0 и σ_1 – неизвестные параметры модели. Значения коэффициентов σ_0 и σ_1 оцениваем МНК. В том случае, если оценка для σ_0 получилась отрицательной, следует положить σ_0 равным 0 и оценить σ_1 заново. Для параметра σ_1 следует получить доверительный интервал. Статистика для получения интервала имеет вид

$$t = \frac{\tilde{\sigma}_1 - \sigma_1}{S_{\sigma_1}} \tag{40}$$

где σ_1 – истинное значение параметра, $\tilde{\sigma}_1$ – его МНК оценка,

$$S_{\sigma_{1}} = \frac{S}{S_{x}\sqrt{n-1}}; \quad S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{|R_{i}|}{\sqrt{2/\pi}} - h(\Delta \varepsilon_{i}) \right)^{2};$$

$$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\Delta \varepsilon_{i} - \overline{\Delta \varepsilon} \right)^{2}; \quad \overline{\Delta \varepsilon} = \frac{1}{n} \sum_{i=1}^{n} \Delta \varepsilon_{i}.$$

$$(41)$$

Случайная величина t (40) имеет распределение Стьюдента с n-1 степенями свободы. Доверительный $(1-\alpha)\cdot 100\%$ -ый интервал для σ_1 имеет вид

$$\tilde{\sigma}_1 - S_{\sigma_1} t_{1 - \frac{\alpha}{2}} \le \sigma_1 \le \tilde{\sigma}_1 + S_{\sigma_1} t_{1 - \frac{\alpha}{2}}, \tag{42}$$

квантиль $t_{1-\frac{\alpha}{2}}$ определяется по таблице 5 приложения А. Если 90%-ый доверительный интервал ($\alpha=0.1$ в таблице 5 приложения А) для σ_1 содержит 0, схему взвешивания не применяют. Положительная нижняя граница доверительного интервала свидетельствует о статистической значимости соотношения (39). В этом случае следует внести веса в целевую функцию МНК (13), что равносильно обычной процедуре МНК для взвешенной модели усталостной кривой (4), (6) ($x=\lg(\Delta\epsilon)$) или (5), (7) ($x=\Delta\epsilon$)

$$\frac{\lg(N_f)}{h(\Delta\varepsilon)} = A_1 \frac{1}{h(\Delta\varepsilon)} + A_2 \frac{x}{h(\Delta\varepsilon)} + \xi. \tag{43}$$

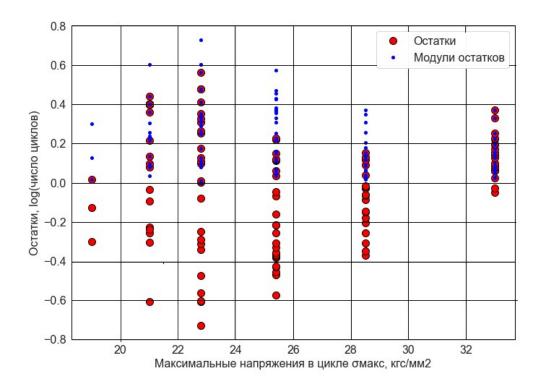
СКО регрессии в этом случае зависит от размаха деформаций и может быть рассчитано по формуле

$$SD = (\sigma_0 + \sigma_1/\Delta\varepsilon) \sqrt{\frac{1}{n-k} \sum_{i=1}^{n} (WR_i)^2}, \quad WR_i = \frac{R_i}{h(\Delta\varepsilon)}$$
 (44)

Нормированные остатки рассчитывают как и для обычного МНК по формуле (18), но SD используют, рассчитанные по (44).

На рисунке 6 приведены результаты обработки данных из алюминиевого сплава марки Б95 [21] с использованием модели усталостной кривой (5). Видно, что разброс циклической долговечности и от своих средних значений и от прогнозных значений модели увеличивается с уменьшением нагрузки (на уровне минимальной нагрузки синей стрелкой обозначены данные по неразрушенным образцам, отстоявшим базу 10⁷ циклов).

В том случае, если доверительный интервал для σ_1 содержит 0, но формальные тесты указывают на неоднородность дисперсии остатков, возможны несколько вариантов.


Первый вариант — структура модели (39) неверна. В этом случае верную структуру можно подобрать, ориентируясь на график зависимости $|\widehat{R}|$ или $|\widehat{R}|^2$ от $\Delta \varepsilon$. В [6] предложена степенная функция для построения модели зависимости квадрата остатков R^2 от $\Delta \varepsilon$:

$$|\widehat{R}|^2 = \sigma_1^2 \cdot (\Delta \varepsilon)^{-\gamma}, \tag{45}$$

где σ_1 и γ – неизвестные параметры модели.

Второй вариант – неверно выбрана структура исходной модели регрессии. В этом случае, вероятно, наблюдается также автокорреляция остатков, и следует перейти к другой модели.

Третий вариант — при условии небольшой выборки (менее 35 наблюдений) некоторые из наблюдений являются влиятельными наблюдениями или выбросами. Следует провести формальный анализ выявления выбросов и экспертную оценку подозрительных наблюдений.

a) зависимость остатков и модулей остатков от $\Delta \epsilon$, %

б) экспериментальные данные, средняя и минимальная кривые

Рисунок 6. Пример неоднородности дисперсии остатков регрессии в силу особенности самих данных и ее учета при построении базисной кривой

Проверка автокорреляции остатков осуществляется на основе сравнения коэффициента Дарбина-Уотсона [22] с критическим значением. Для вычисления этого коэффициента нормированные остатки (17) упорядочивают по возрастанию значения независимой переменой и вычисляют величину

$$D = \frac{\sum_{i=2}^{n} (\widehat{SR}_i - \widehat{SR}_{i-1})^2}{\sum_{i=1}^{n} \widehat{SR}_i^2},$$
(46)

где \widehat{SR}_i , i=1..n — упорядоченные нормированные остатки. Критическое значение можно вычислить по формуле [7]

$$D_k(n) = 2 - \frac{4,73}{(n)^{0,555}}. (47)$$

Если $D < D_k(n)$ можно сделать вывод о значимой автокорреляции остатков на уровне $\alpha =$ 0,05.

Значимая автокорреляция, как правило, говорит о неверном выборе модели усталостной кривой.

Рассмотрим пример обнаружения значимой автокорреляции. В таблице 5 приведены результаты испытаний образцов из стали Incoloy 800H, T=22 °C, $R_{\varepsilon}=-1$ [23]. Все испытанные образцы доведены до разрушения.

- 1. Формируем матрицы регрессоров (15) и вычисляем параметры (см. табл. 5) степенной (4) и экспоненциальной (5) моделей по формуле (14);
- 2. Вычисляем остатки регрессии R_i (16) и нормированные остатки регрессии SR_i (18) (см. табл. 5);
- 3. Упорядочиваем по возрастанию $\Delta \varepsilon$ нормированные остатки SR_i , получая упорядоченные нормированные остатки \widehat{SR}_i (см. табл. 5, наблюдения изначально упорядоченны по возрастанию $\Delta \varepsilon$, SR_i совпадают с \widehat{SR}_i);
- 4. Вычисляем статистику Дарбина-Уотсона D (46) для каждой модели и критическое значение $D_k(28)$ по формуле (47) (таблица 6).
- 5. Делаем вывод: если $D < D_k$, автокорреляция остатков значима на уровне $\alpha = 0.05$.

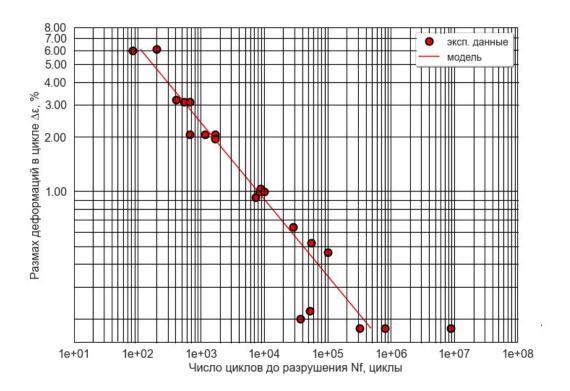

На рисунке 7 приведены результаты построения средних усталостных кривых для моделей (4) и (5). На рисунке 7 б) заметна ярко выраженная нелинейность связи ∆є и $\lg(N_f)$, что отражено наличии значимой автокорреляции для модели (5). При этом, согласно рисунку 7 а), связь $\lg(\Delta \varepsilon)$ и $\lg(N_f)$ близка к линейной, значимой автокорреляции не наблюдается.

Таблица 5. Результаты испытаний образцов из сплава Incoloy 800H, T=22 °C, $R_{\varepsilon}=-1$ [23], параметры регрессионных моделей (4), (5) и остатки регрессии

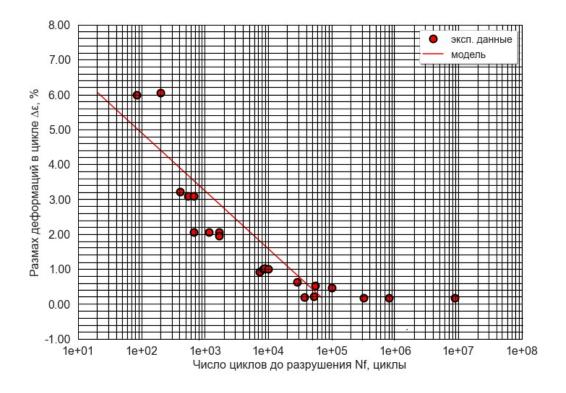

F		(1), (1	Степ	енная модель (4)	Экспонен	циальная модель (5)
			$\widetilde{A_1}$	$\widetilde{A_2}$	$\widetilde{A_1}$	$\widetilde{A_2}$
			3,903	-2,371	-2,371 4,956	
			Остатки	Упорядоченные	Остатки	Упорядоченные
No.	Δε, %	N_f	регрессии	нормированные	регрессии	нормированные
№	Δε, %		R_i	остатки регрессии \widehat{SR}_i	R_i	остатки регрессии $\hat{S}\hat{R}_i$
1	0,178	322531	-0,172	-0,395	0,660	0,895
2	0,178	810161	0,228	0,526	1,060	1,438
3	0,178	8767124	1,263	2,908	2,094	2,841
4	0,2	37276	-0,989	-2,277	-0,264	-0,358
5	0,222	51795	-0,739	-1,701	-0,108	-0,146
6	0,464	100000	0,306	0,705	0,323	0,439
7	0,522	55317	0,170	0,392	0,101	0,137
8	0,642	28651	0,098	0,225	-0,112	-0,152
9	0,928	7197	-0,123	-0,283	-0,540	-0,733
10	1	8209	0,011	0,025	-0,440	-0,596
11	1	10000	0,097	0,223	-0,354	-0,480
12	1,036	8767	0,076	0,175	-0,389	-0,528
13	1,964	1692	0,020	0,046	-0,545	-0,740
14	2,058	674	-0,331	-0,763	-0,888	-1,205
15	2,058	1171	-0,092	-0,211	-0,649	-0,880
16	2,058	1692	0,068	0,157	-0,489	-0,663
17	3,108	539	-0,004	-0,009	-0,354	-0,480
18	3,108	674	0,093	0,214	-0,257	-0,348
19	3,214	409	-0,089	-0,206	-0,410	-0,556
20	6	83	-0,139	-0,321	0,574	0,779
21	6,058	198	0,248	0,571	0,987	1,338
			SD	0,434	SD	0,737

Таблица 6. Результаты применения критерия Дарбина-Уотсона

Сравниваемые модели	$\sum_{i=2}^{n} (\widehat{SR}_i - \widehat{SR}_{i-1})^2$	$\sum_{i=2}^{n} \widehat{SR}_{i}^{2}$	D	$D_k(28)$	Вывод
Степенная модель	42,221	19,000	2,22		Значимой
(4)	12,221	15,000	2,22		автокорреляции не
				1,127	наблюдается
Экспоненциальная	16,034	19,000	0,84		Наблюдается
модель (5)					значимая
(3)					автокорреляция

а) степенная модель (4): нет значимой автокорреляции

б) экспоненциальная модель (5): значимая автокорреляция Рисунок 7. Пример отсутствия и наличия значимой автокорреляции остатков

11.5 Проверка адекватности регрессионной модели по критерию Фишера

Для линейной по параметрам модели в случае успешного прохождения анализа остатков следует проверить адекватность по критерию Фишера. Нулевая гипотеза может быть сформулирована так: «дисперсия вокруг линии регрессии равна осредненной выборочной условной дисперсии». Для проверки такой гипотезы следует составить статистику [5, 6, 7]

$$F_1 = \frac{s_2^2}{s_1^2},\tag{48}$$

где s_1^2 — осредненная выборочная условная дисперсия, s_2^2 — дисперсия вокруг линии регрессии. Для вычисления s_1^2 необходимо сгруппировать наблюдения по уровням нагрузки $\Delta \varepsilon_j, \ j=1,..m$ и вычислить среднее значение логарифма долговечности на каждом уровне:

$$\widehat{\lg(N_f)_j} = \frac{1}{n_j} \sum_{i=1}^{n_j} \lg(N_f)_i, j = 1,..m$$
(49)

где n_i – число образцов, испытанных на уровне $\Delta \varepsilon_i$. Тогда

$$s_1^2 = \frac{\sum_{j=1}^m \sum_{i=1}^{n_j} \left(\lg(N_f)_{ij} - \lg(\widehat{N_f})_j \right)^2}{n - m},$$
50)

где $\lg(N_f)_{ij}$ – логарифм долговечности i-го наблюдения, соответствующего уровню $\Delta \varepsilon_j$. Дисперсия s_2^2 вычисляется по формуле

$$s_2^2 = \frac{\sum_{j=1}^m n_j \left(\widehat{\lg(N_f)}_j - (A_1 + A_2 \operatorname{lg}(\Delta \varepsilon_j) + A_3 \left(\operatorname{lg}(\Delta \varepsilon_j) \right)^2 + \dots + A_k \left(\operatorname{lg}(\Delta \varepsilon_j) \right)^{k-1}) \right)^2}{m - k}$$

$$5$$

для моделей (4) (k = 2) и (6) и по формуле

$$s_{2}^{2} = \frac{\sum_{j=1}^{m} n_{j} \left(\widehat{\lg(N_{f})}_{j} - (A_{1} + A_{2} \triangle \varepsilon_{j} + A_{3} (\triangle \varepsilon_{j})^{2} + ... + A_{k} (\triangle \varepsilon_{j})^{k-1}) \right)^{2}}{m - k}$$

$$($$

для моделей (5) (k = 2) и (7).

В том случае, если нулевая гипотеза верна, статистика (48) имеет распределение Фишера со степенями свободы m-k и n-m.

Если значение статистики (48) не превышает критического значения F(m-k,n-m), определяемого по таблице 7 приложения A на уровне значимости $\alpha=0.05$, нулевая гипотеза

принимается, а рассматриваемую модель можно считать адекватной. Иное говорит о необходимости рассмотрения модели другой структуры или о наличии неучтенных в модели факторов.

11.6 Выбросы и оценка влиятельности наблюдений

Для выявления наблюдений-претендентов на исключение из рассмотрения на основе экспертной оценки применяют методы поиска влиятельных наблюдений и выбросов [7-9, 10, 14, 24]. Все они основаны на вычислении диагональных элементов матрицы проекций.

11.6.1 Матрица проекций

Введем обозначения векторов из формулы (14):

$$\bar{a} = \begin{pmatrix} \widetilde{A}_1 \\ \dots \\ \widetilde{A}_k \end{pmatrix} \text{ } \text{ } \bar{y} = \begin{pmatrix} \lg \left((N_f)_1 \right) \\ \dots \\ \lg \left((N_f)_n \right) \end{pmatrix}$$
 (53)

Тогда (14) принимает вид

$$\bar{a} = \left(X^T X\right)^{-1} X^T \bar{y},\tag{54}$$

откуда предсказанные моделью значения зависимой переменной можно записать в виде

$$\bar{\hat{y}} = X\bar{\beta} = X(X^TX)^{-1}X^T\bar{y} = H\bar{y}$$
(55)

Матрицу H называют матрицей проекций [8, 10, 14], так как она проецирует вектор наблюдаемых значений на вектор прогнозируемых моделью значений:

$$H = X(X^T X)^{-1} X^T \tag{56}$$

Диагональные элементы матрицы проекций H_{ii} , i=1,..n изменяются от 0 до 1 и отражают потенциал воздействия отдельных наблюдений на оценки параметров модели регрессии. При этом сумма H_{ii} для всех наблюдений равна числу коэффициентов уравнения регрессии k, значит их среднее значение равно k/n. Формальный критерий для выделения влиятельных наблюдений [10, 14]:

$$H_{ii} > 2k/n \tag{57}$$

считают оказывающими существенное влияние на параметры модели.

11.6.2 Стъюдентизированные остатки

Внутренние стъюдентизированные остатки [14] вычисляют по формуле

$$r_i = \frac{R_i}{SD\sqrt{1 - H_{ii}}}, \ i = 1..n_{fail},$$
 (58)

А внешние стъюдентизированные остатки [10, 14] – по формуле

$$t_i = \frac{R_i}{SD_{(-i)}\sqrt{1 - H_{ii}}}, \ i = 1..n_{fail},$$
 (59)

где величина $SD_{(-i)}$ – СКО, рассчитанное по формуле (17), для модели, верифицированной после исключения из рассмотрения i-го наблюдения.

Остатки t_i имеют распределение Стъюдента с n-k-1 степенями свободы. С использованием неравенства Бонферрони наблюдение с максимальным по модулю внешним стьюдентизированным остатком $G = \max(|t_i|)$ следует проверить [7] согласно неравенству

$$G > t_{1 - \frac{\alpha}{2n}} \tag{60}$$

где $t_{1-\frac{\alpha}{2n}}$ — квантиль распределения Стьюдента с n-k-1 степенями свободы на уровне значимости $\alpha/2n$, $\alpha=0.05$ (таблица 6 приложения А). В случае выполнения неравенства (66) наблюдение с максимальным внешним стьюдентизированным остатком можно считать выбросом.

11.6.3 Дистанция Кука

Дистанцию Кука рассчитывают по формуле [7-9, 10, 14, 24]

$$D_i = \frac{r_i^2}{k} \cdot \frac{H_{ii}}{1 - H_{ii}}.\tag{61}$$

Первый множитель отражает степень рассогласования наблюдения с моделью, второй – потенциал влияния наблюдения на параметры.

Другим подобным параметром является $DFFITS_i$ [10, 14, 24]

$$DFFITS_i = t_i \sqrt{\frac{H_{ii}}{1 - H_{ii}}}.$$
 (62)

Наиболее распространенный формальный критерий выявления влиятельных наблюдений на основе дистанции Кука имеет вид [10, 14]

$$D_i > \frac{4}{n-k}. (63)$$

Для определения наблюдения как выброса рассматривают формальное правило [10, 14]

$$DFFITS_i > 2\sqrt{k/(n-k)} \tag{64}$$

В [10] в формуле (62) вместо t_i используют r_i , и формальный критерий другого вида

в (63), а выбросом предложено считать наблюдение для которого одновременно выполняются аналоги неравенств (63) и (64).

11.6.4 Рекомендации по направлению подозрительных наблюдений на экспертную оценку

Наблюдение следует признать влиятельным, если:

- для соответствующего ему диагонального элемента матрицы проекций выполняется неравенство (57);
- модуль соответствующего ему внутреннего стьюдентизированного остатка (58) больше 2.

Наблюдение следует признать выбросом, если:

- для него выполняется неравенство (60);
- для него одновременно выполняются неравенство (63) и (64).

Влиятельными наблюдениями, как правило, являются наблюдения с наибольшим и наименьшим значениями независимой переменной. Если это не так, влиятельные наблюдения следует направить на экспертную оценку.

Выбросы должны быть направлены на экспертную оценку в любом случае.

Рассмотрим пример определения влиятельных наблюдений и выбросов. В таблице 7 приведены результаты испытаний никелевого сплава, $R_{\epsilon} = -1$. Все испытанные образцы доведены до разрушения. Применим степенную модель (4):

- 1. Формируем матрицу регрессоров (15);
- 2. По формуле (14) вычисляем оценки параметров \widetilde{A}_1 и \widetilde{A}_2 модели (4) (см. табл. 7);
- 3. По формуле (16) вычисляем остатки регрессии R_i и SD по формуле (17) (см. табл. 7);
- 4. Используя полученную в п. 1 матрицу регрессоров, вычисляем матрицу проекций H (56). Диагональные элементы H_{ii} полученной матрицы проекций H приведены в табл. 7;
- 5. Используя R_i , SD и H_{ii} вычисляем внутренние стъюдентизированные остатки r_i (58). Для вычисления внешних стъюдентизированных остатков исключаем первое наблюдение из выборки и для новой выборки проделываем п.1-п.3. Полученное значение SD представляет собой $SD_{(-1)}$. Возвращаем первое наблюдение в выборку. Описанные в данном пункте действия повторяем для каждого наблюдения, получая $SD_{(-i)}$. По формуле

- (59) вычисляем t_i (см. табл. 7).
 - 6. По формулам (61) и (62) вычисляем D_i и $DFFITS_i$ (см. табл. 7).
- 7. Вычисляем правые части неравенств (57), (60), (63) и (64) (см. табл.7 «Критические значения»). Согласно изложенным выше рекомендациям делаем вывод: наблюдения № 1, 2, 3, 24 и 25 являются влиятельными, а наблюдения № 24 и 25 выбросами. Так как обнаруженные влиятельные наблюдения соответствуют наиболее и наименее нагруженным режимам, направлять их на экспертную оценку не требуется. Наблюдения № 24 и 25 должны быть направлены на экспертную оценку как выбросы.

Таблица 7. Результаты испытаний образцов из никелевого сплава [Эксперимент ЦИАМ], параметры регрессионной модели (4) и значения величин (56)-(64)

	Степенная модель (4)		-чения величи		<u>'</u>	Критическ	ие значени	1Я	
	\widetilde{A}_1	\widetilde{A}_1	Остатки	0,16	2, -2	-	3,505	0,174	0,590
	4,024	4,024	регрессии						
№	Δε, %	N_f	R_i	H_{ii}	r_i	$SD_{(-i)}$	t_i	D_i	DFFITS _i
1	1,1	4351	-0,169	0,164	-0,684	0,273	-0,675	0,031	0,299
2	1,1	4617	-0,143	0,164	-0,579	0,274	-0,571	0,022	0,253
3	1,1	6493	0,005	0,164	0,020	0,276	0,020	0,000	0,009
4	1	8893	-0,075	0,086	-0,291	0,275	-0,285	0,003	0,087
5	1	5634	-0,273	0,086	-1,058	0,270	-1,060	0,035	0,324
6	1	9642	-0,04	0,086	-0,155	0,276	-0,152	0,001	0,046
7	1	12922	0,087	0,086	0,337	0,275	0,331	0,004	0,101
8	0,9	22586	0,090	0,044	0,341	0,275	0,335	0,002	0,071
9	0,9	18805	0,010	0,044	0,040	0,276	0,039	0,000	0,008
10	0,9	18986	0,015	0,044	0,055	0,276	0,054	0,000	0,012
11	0,9	35721	0,289	0,044	1,094	0,270	1,099	0,018	0,235
12	0,85	24174	-0,010	0,041	-0,039	0,276	-0,039	0,000	0,008
13	0,85	17313	-0,155	0,041	-0,587	0,274	-0,580	0,005	0,119
14	0,8	100531	0,471	0,052	1,790	0,258	1,876	0,059	0,441
15	0,8	60652	0,251	0,052	0,955	0,271	0,953	0,017	0,224
16	0,8	37260	0,040	0,052	0,150	0,276	0,148	0,000	0,035
17	0,8	26862	-0,103	0,052	-0,390	0,275	-0,383	0,003	0,090
18	0,8	26866	-0,102	0,052	-0,390	0,275	-0,383	0,003	0,090
19	0,8	73632	0,335	0,052	1,275	0,268	1,292	0,030	0,304
20	0,75	60429	0,103	0,082	0,397	0,275	0,390	0,005	0,117
21	0,75	64955	0,134	0,082	0,518	0,274	0,511	0,008	0,153
22	0,75	106272	0,348	0,082	1,345	0,266	1,365	0,054	0,409
23	0,75	85105	0,252	0,082	0,972	0,271	0,970	0,028	0,290
24	0,7	17415	-0,594	0,134	-2,364	0,246	-2,593	0,287	1,018
25	0,7	11787	-0,764	0,134	-3,038	0,225	-3,646	0,474	1,431

Процедуры обрабомногоцикловую уст		ов испытаний	образцов	на малоц	икловую и	ИМ-21.33-	-05 Pe	евизия 01
	SD	0.282						

На рисунке 8 представлена экспериментальные данные из таблицы 7, красной сплошной обозначена средняя кривая, построенная по модели (4) с учетом всех данных, а желтой – средняя кривая, построенная по модели (4) в результате исключения из выборки выбросов (наблюдения № 24, 25).

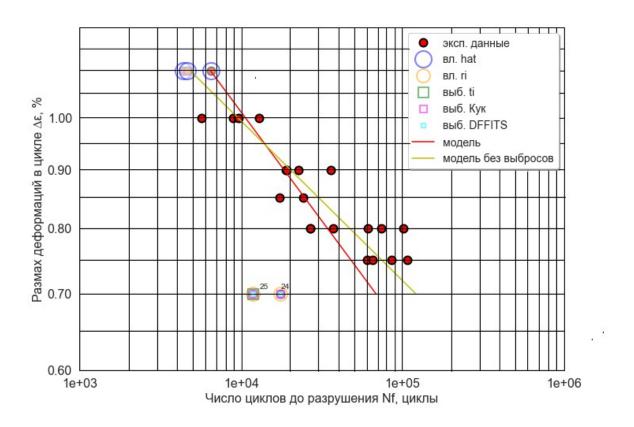


Рисунок 8. Определение влиятельных наблюдений и выбросов: вл. hat – влиятельное наблюдение согласно (57); вл. ri – влиятельное наблюдение согласно (58); выб. ti – выброс согласно (60); выб. Кук – выброс согласно (64)

12 Сравнение регрессионных моделей и выбор модели усталостной кривой

Начинать анализ следует с выбора одной из моделей (4) и (5). В результате полной диагностики для выборки X_{rup} (см. рисунок 3 и раздел 11) по каждой из этих моделей следует принять решение о том, может ли модель быть использована для построения средней кривой. Если могут быть использованы обе модели, наилучшую из них выбирают по наименьшему SD и на этом этап выбора модели оканчивается.

Если ни одна из моделей (4) и (5) не может быть выбрана, возможны два случая.

В первом случае наблюдается значимая автокорреляция и нелинейная зависимость остатков регрессии моделей (4) и (5) от независимой переменной. В этом случае следует перейти к выбору одной из моделей (6), (7).

Во втором случае значимой автокорреляции нет, но может наблюдаться неоднородность дисперсии или не прохождение теста Фишера при отсутствии выраженной нелинейной зависимости остатков регрессии от независимой переменной. Это редкий и наиболее сложный случай, который может быть связан как с наличием выбросов, которые успешно прошли экспертную оценку, однако, очевидно являются нетипичными наблюдениями, так и с наличием сторонних факторов, которые повлияли на наблюдения на стадии испытаний и не учтены в анализе. В этом случае данные следует по возможности дополнить или перегруппировать.

Диагностика моделей (6) и (7) должна проводиться аналогично диагностике моделей (4) и (5). В том случае, если полиномы второй и третей степеней (6) и (7) не проходят проверки, следует перейти к выбору одной из моделей (8)-(10), диагностику которых следует осуществлять на основе графического анализа остатков, формальных тестов на нормальность и автокорреляцию.

При условии одинаковой зависимой переменной для выбора одной из моделей можно использовать СКО регрессии (сравнение между собой моделей (4)-(7) или моделей (9) и (10)). При этом следует помнить, что СКО регрессии является только оценкой средней ошибки. Увеличение числа параметров модели будет приводить к уменьшению средней ошибки при прогнозировании только до некоторого момента, после которого добавление новых параметров не будет вносить прогностической ценности (хотя СКО регрессии на данных выборки, по которым определялись оценки параметров, будет уменьшаться). Учесть это при оценке качества модели можно при помощи критериев, накладывающих «штраф» на число параметров модели. Рекомендуется использовать информационной критерий Акаике [25], основанный на методе максимального правдоподобия. При нормальном распределении остатков критерий имеет вид

$$AIC = 2k - n \cdot \ln\left(\sum_{i=1}^{n} R_i^2\right). \tag{65}$$

Наиболее предпочтительна модель с наименьшим значением AIC.

Для сравнения моделей с одинаковым числом параметров можно использовать коэффициент детерминации [8, 9]

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} R_{i}^{2}}{\sum_{i=1}^{n} \left(\lg(N_{f})_{i} - \lg(\widehat{N}_{f}) \right)^{2}}.$$

$$66)$$

где $l\widehat{g(N_f)} = \frac{1}{n} \sum_{i=1}^{n} lg(N_f)_i$.

Для линейных по параметрам моделей рекомендуется проводить проверку статистической значимости коэффициента детерминации. Статистически незначимое отличие от нуля коэффициента детерминации говорит о том, что предложенная регрессионная модель хотя и адекватна (внутренняя дисперсия системы сравнима с дисперсией относительно линии регрессии), но описывает усталостные свойства не лучше, чем нуль-модель – регрессионная модель вида

$$\lg N_f = A_1 + \xi,\tag{67}$$

МНК-оценка \widetilde{A}_1 параметра A_1 представляет собой среднее значение логарифма долговечности $\widehat{\lg(N_f)}$.

Для проверки нулевой гипотезы «коэффициент детерминации равен 0» следует составить статистику [7-9]

$$F_2 = \frac{R^2(n-k)}{(1-R^2)(k-1)},\tag{68}$$

имеющую в случае справедливости нулевой гипотезы распределение Фишера со степенями свободы k-1 и n-k. Если значение статистики (68) больше, либо равно критического значения F(k-1,n-k), определяемое по таблице 7 приложения A на уровне значимости $\alpha=0.05$, нулевая гипотеза отвергается, а коэффициент детерминации можно считать статистически значимым.

Статистика (68) учитывает число коэффициентов модели и величину (n-k) – разность между объемом выборки и числом коэффициентов модели. В связи с этим, уменьшение объема выборки ведет к ужесточению требований для величины R^2 , и даже достаточно большие значения (>0,9) могут быть признаны статистически незначимыми.

Первоначально при обработке следует принимать уровень значимости 0,05, однако допустимо снизить требования, проверяя критерий Фишера на уровне значимости 0,1 (таблица 8 приложения A).

Для сравнения полиномиальных моделей с разным числом коэффициентов следует использовать скорректированный коэффициент детерминации, накладывающий подобно критерию Акаике «штраф» на число параметров модели:

$$R_{adj}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k}. (69)$$

13 Построение базисных усталостных кривых

Базисная кривая (p/γ) представляет собой нижнюю границу толерантного интервала [26], внутри которого с заданной доверительной вероятностью у находится не менее заданного процента p % генеральной совокупности. Уравнение базисной кривой для моделей усталости (4)-(8) имеет вид [6,8]

$$lgN_f^{basis}(\Delta\varepsilon) = lgN_f^{mean}(\Delta\varepsilon) - U\cdot SD, \tag{70}$$

а для моделей усталости (9) и (10)

$$\Delta \varepsilon^{basis}(N_f) = \Delta \varepsilon^{mean}(N_f) - U \cdot SD, \tag{71}$$

где lgN_f^{mean} и $\Delta \varepsilon^{basis}(N_f)$ — прогнозные значения по средней кривой; U — толерантный коэффициент.

В [4] даны рекомендации, в соответствии с которыми в предположении нормального распределения логарифма долговечности при использовании моделей (4) и (5) для основных деталей допустимо принимать $U \equiv 3$, приближая таким образом базисную кривую (99%/0.95). Для расчета особо ответственных деталей допустимо принимать $U \equiv 2$, приближая базисную кривую (90%/0,95). В [7, 10] приведено выражение для определения коэффициента U, позволяющее уточнить значение U с учетом объема выборки:

$$U(p,\gamma,n,k) = \frac{t^*_{n-k,\gamma}(\sqrt{n} \cdot u_{p/100})}{\sqrt{n}}$$
(72)

где $t^*_{n-k,\gamma}(\sqrt{n}\cdot u_{\nu/100}) - \gamma$ -квантиль нецентрального распределения Стьюдента со степенью свободы n-k и коэффициентом сдвига $\sqrt{n} \cdot u_{v/100}$; $u_{v/100}-p/100$ -квантиль стандартного нормального распределения. Толерантные коэффициенты для базисной кривой (99%/0,95) приведены в таблице 9 приложения А, а для кривой (90%/0,95) – в таблице 10 приложения A.

На рисунке 9 приведены зависимости толерантного коэффициента от объема выборки. Видно, что при уменьшении объема выборки значение толерантного коэффициента возрастает. Точке пересечения графика U(99%,0.95,n,2) и горизонтальной прямой U = 3 соответствует объем выборки $n \approx 36$, а точке пересечения графика U(90%,0.95,n,2) и горизонтальной прямой U=2 соответствует объем выборки $n\approx 18$. Эти значения и определяют рекомендованный минимальный объем испытаний (см. раздел 7) для построения базисных кривых.

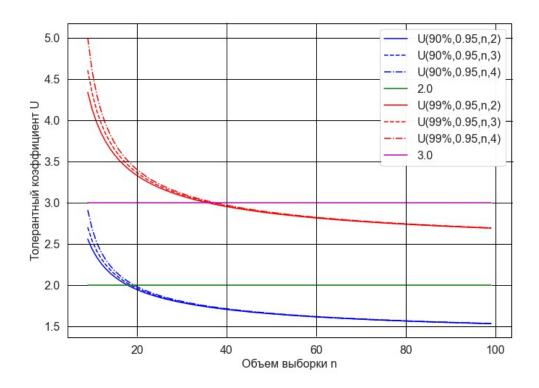


Рисунок 9. Зависимость толерантного коэффициента от объема выборки

При наличии указанного в разделе 7 или большего объема испытаний для построения базисных кривых следует использовать принятые в сложившейся практике рекомендованные в [4] толерантные коэффициенты: $U \equiv 3$ для материалов основных деталей и $U \equiv 2$ для материалов особо ответственных деталей.

В том случае, если объем испытаний ограничен, следует использовать формулу (72), обеспечивающую более консервативную оценку.

Если средняя кривая построена с учетом X_{base} , n в формулах (70)-(71) следует заменить на n_{all} .

14 Примеры обработки данных

Рассмотрим примеры обработки данных. Результаты испытаний приведены в таблицах 8, 10, 12, 15, 20. В последнем столбце указана информация об окончании испытания: если образец был снят по достижении некоторого числа циклов, в таблицу заносится значение «base», если образец был доведен до разрушения — «rupture». Все формальные тесты анализа остатков проводили рекомендуемых в MP уровнях значимости. Результаты испытаний получены в лаборатории ЦИАМ им. П.И. Баранова или взяты из литературы, в этом случае ссылки приведены в тексте.

14.1 Результаты обработки данных испытаний титанового сплава на МЦУ в условиях жесткого симметричного цикла с использованием степенной и экспоненциальной моделей

Таблица 8. Результаты исг	іытаний: титановый	і сплав, жесткий цик	л. $R_{c} = -1$

Порядковый номер	Размах деформаций $\Delta \epsilon$, %	Циклическая долговечность N_f	Информация об окончании испытания
1	1,4	1 910	rupture
2	1,4	3 870	rupture
3	1,4	2 790	rupture
4	1,2	4 740	rupture
5	1,2	5 220	rupture
6	1,2	7 300	rupture
7	1,1	11 680	rupture
8	1,1	12 030	rupture
9	1,1	9 100	rupture
10	1	14 850	rupture
11	1	21 090	rupture
12	1	21 530	rupture
13	0,9	19 590	rupture
14	0,9	31 020	rupture
15	0,8	50 000	base
16	0,8	50 000	base

Построение средней усталостной кривой начинаем с рассмотрения степенной (4) и экспоненциальной (5) моделей, k=2. Рассматриваем выборку из образцов, доведенных до разрушения, X_{rup} (наблюдения №1-14), n=14, число уровней нагрузки m=5.

- 1. Для каждой из моделей формируем матрицу регрессоров (15), вычисляем оценки параметров \widetilde{A}_1 и \widetilde{A}_2 (14), остатки регрессии (16) и СКО (17);
- 2. Строим графики зависимости остатков от $\lg(\Delta \epsilon)$ для модели (4) и от $\Delta \epsilon$ для модели (5), графики квантилей (рисунок 10), статистику критерия Шапиро-Уилка (см. раздел 11.1). Вычисляем статистики для критериев Уайта и Бреуша-Пагана (см. раздел 11.2). Вычисляем статистику Дарбина-Уотсона (см. раздел 11.4);

- Ревизия 01
- Заносим в таблицу все полученные статистики и их критические значения, определенные по таблицам приложения А, проводим сравнение статистик и их критических значений согласно рекомендациям разделов 11.1, 11.2 и 11.4 (требования к остаткам удовлетворяются, если статистики Шапиро-Уилка и Дарбина-Уотсона принимают значения не ниже критических, а статистики Уайта и Бреуша-Пагана – не выше критических);
- 4. Делаем вывод: остатки регрессии моделей (4) и (5) проходят как визуальную проверку на нормальность и на однородность дисперсии, так и формальные тесты на нормальность, однородность дисперсии и автокорреляцию;
- 5. Вычисляем статистику теста Фишера для проверки адекватности моделей (см. раздел 11.5). Сравниваем ее с критическим значением, определенным по таблице 7 приложения А. Обе модели проходят проверку на адекватность;
- 6. На основании меньшего СКО, вычисленного по формуле (17), выбираем экспоненциальную модель (5). Следует отметить, что выбор будет таким же, если выбирать одну из моделей (4) и (5) на основании большего R^2 , большего F_2 или меньшего AIC;
- 7. Несмотря на то, что в таблице 8 есть результаты для отстоявших базу образцов, учитывать их не следует, так как для построения кривой выбрана линейная по параметрам модель (5);
- 8. Так как объем выборки n = 14 недостаточен для использования толерантных коэффициентов 2 и 3 для построения базисных кривых (90%/0,95) и (99%/0,95) соответственно, толерантные коэффициенты выбираем по таблицам 9 и 10 приложения А;

Результаты обработки сведены в таблицу 9. Итоговые средняя и базисные усталостные кривые приведены на рисунке 11.

Таблица 9. Результаты обработки данных с использованием степенной и экспоненциальной моделей: титановый сплав, жесткий цикл, $R_{\varepsilon} = -1$

]	Построе	ние средне	ей уст	алостн	юй крив	ой				
		Анализ	остатков								
	Шапиро-		Бреуш-	Дар	бин-						
	Уилк	Уайт	Паган	Уо	гсон	F_1	SD	R^2	F_2	AIC	
				Крі	итичес	еские значения					
	0,874	5,991	5,991	0,907		3,863	-	-	4,667	-	
Модель				31	начени	я статис	тик				
Степенная (4)	0,941	1,428	0,137	1,976		0,808	0,109	0,919	135,814	-23,3	
Экспоненциальная	0,923	1,399	1,219	1,96	2	0,706	0,107	0,921	139,874	-23,7	
(5)											
Уравнение кривой			lgN_f^{mean}	(3Δ)	= 4,23	5-5,543	Δε				
	П	остроен	ие базисні	ых ус	галост	ных криі	вых				
Базис	Толерантн	ый коэф	фициент	U	Урав	нение кр	ивой	·			
(90%/0,95)	2,142				lgN_f^{ba}	$asis$ $(\Delta \varepsilon)$	= 4,006	-5,543·Δε	ε		

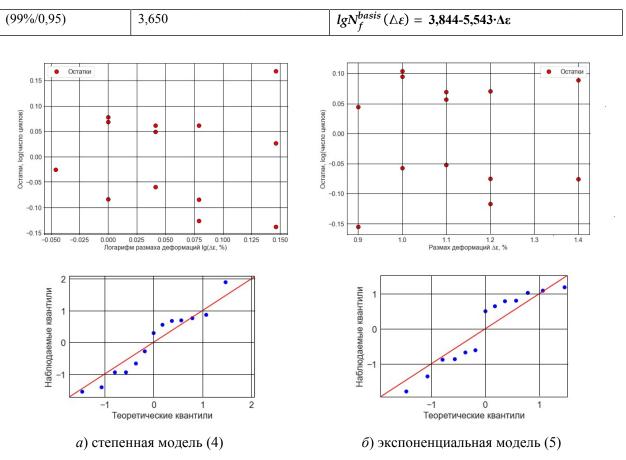


Рисунок 10. Анализ распределения остатков регрессии: титановый сплав, жесткий цикл, $R_{\varepsilon} = -1$

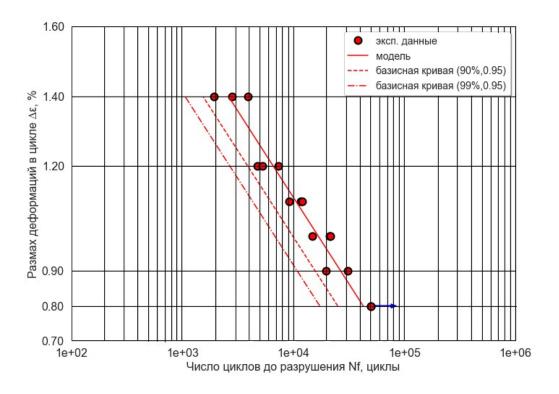


Рисунок 11. Средняя и базисные усталостные кривые: титановый сплав, жесткий цикл, $R_{\varepsilon} = -1$

14.2 Результаты обработки данных испытаний титанового сплава на МнЦУ в условиях мягкого цикла с коэффициентом асимметрии 0,5 с использованием степенной и экспоненциальной моделей

Таблица 10. Результаты испытаний: титановый сплав, $T=20\,^{\circ}\mathrm{C}$, мягкий цикл, $R_{\sigma}=0.5\,^{\circ}$

Порядковый	Максимальные	Циклическая	Информация об окончании
номер	напряжения σ_{max} ,	долговечность N_f	испытания
	кгс/мм ²	,	
1	52	277 272	rupture
2	50	365 904	rupture
3	48	420 934	rupture
4	48	3 380 482	rupture
5	46	509 846	rupture
6	46	353 069	rupture
7	46	2 978 691	rupture
8	44	5 419 479	rupture
9	44	4 097 297	rupture
10	44	16 715 340	rupture
11	43	1 888 184	rupture
12	42	1 654 987	rupture
13	42	5 173 903	rupture
14	42	526 451	rupture
15	42	6 982 542	rupture
16	40	13 926 230	rupture
17	40	7 076 135	rupture
18	39	9 886 342	rupture
19	38	9 558 211	rupture
20	37	12 764 436	rupture

Построение средней усталостной кривой начинаем с рассмотрения степенной (4) и экспоненциальной (5) моделей, k=2. Рассматриваем выборку из образцов, доведенных до разрушения, X_{rup} (наблюдения №1-20), n=20, число уровней нагрузки m=11.

- 1. Действуем аналогично примеру раздела 14.1 (п. 1-3). На рисунке 12 приведены графики зависимости остатков от независимой переменной и графики квантилей, а в таблице 11 значения статистик;
- 2. Делаем вывод: остатки регрессии моделей (4) и (5) проходят как визуальную проверку на нормальность и на однородность дисперсии, так и формальные тесты на нормальность, однородность дисперсии и автокорреляцию;
- 3. Вычисляем статистику теста Фишера для проверки адекватности моделей (см. раздел 11.5). Сравниваем ее с критическим значением, определенным по таблице 7 приложения А. Обе модели проходят проверку на адекватность;
- 4. На основании меньшего СКО, вычисленного по формуле (17), выбираем экспоненциальную модель (5).

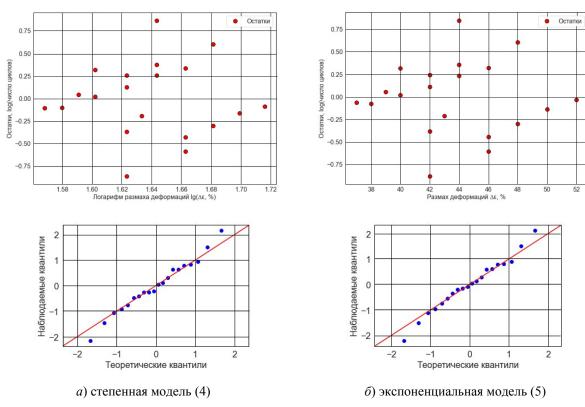


Рисунок 12. Анализ распределения остатков регрессии: титановый сплав, $T=20\,^{\circ}\mathrm{C}$, мягкий цикл, $R_{\sigma}=0.5\,$

Таблица 11. Результаты обработки данных с использованием степенной и экспоненциальной моделей: титановый сплав, $T=20~^{\circ}\mathrm{C}$, мягкий цикл, $R_{\sigma}=0.5$

		Построеі	ние средне	ей усталостн	ной крив	 ой			,		
			остатков	<u> </u>	F						
	Шапиро-		Бреуш-	Дарбин-	-						
	Уилк	Уайт	Паган	Уотсон	F_1	SD	R^2	F_2	AIC		
		Критические значения									
	0,905	5,991	5,991	1,103	3,179	-	-	4,414	-		
Модель Значения статистик											
Степенная (4)	0,992 1,816 0,328			2,155	0,611	0,423	0,542	21,271	27,386		
Экспоненциальная	0,992	1,925	0,216	2,187	0,646	0,421	0,546	21,624	27,207		
(5)											
Уравнение кривой			lgN_f^{mean}	$(\Delta \varepsilon) = 11,345-0,113 \cdot \Delta \varepsilon$							
	П	остроен	ие базиснь	ых усталост	ных кри	вых	,	,	,		
Базис	Толерантн	ый коэф	фициент								
	U										
(90%/0,95)	2			$lgN_f^{basis}(\Delta \varepsilon) = 10,502-0,113 \cdot \Delta \varepsilon$							
(99%/0,95)	3,326			$lgN_f^{basis}(I$	$\Delta \varepsilon = 9.9$	945-0,11	3·Δε				

5. Объем выборки n=20 недостаточен для использования толерантного коэффициента 3 для построения базисной кривой (99%/0,95), толерантный коэффициент выбираем по таблице 9 приложения А. Для построения базисной кривой (90%/0,95) следует использовать толерантный коэффициент, равный 2.

Результаты обработки сведены в таблицу 11. Итоговые средняя и базисные усталостные кривые приведены на рисунке 13.

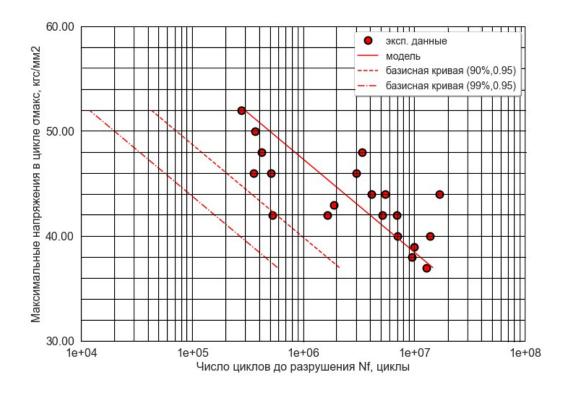


Рисунок 13. Средние и базисные усталостные кривые: титановый сплав, $T=20\,^{\circ}\mathrm{C}$, мягкий цикл, $R_{\sigma}=0.5\,$

14.3 Результаты обработки данных испытаний Ti-6Al-4V ELI на МЦУ в условиях жесткого симметричного цикла с использованием степенной и экспоненциальной моделей и полиномиальных моделей второй степени

Таблица 12. Результаты испытаний: Ti-6Al-4V ELI, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [27]

Порядковый	Размах деформаций	Циклическая	Информация об окончании
номер	$\Delta \epsilon$, %	долговечность N_f	испытания
1	2,4	1 101	rupture
2	2,4	1 168	rupture
3	2,4	1 582	rupture
4	2	1 993	rupture
5	2	2 270	rupture
6	2	1 880	rupture
7	1,6	6 457	rupture
8	1,4	24 906	rupture
9	1,4	24 587	rupture
10	1,2	62 476	rupture
11	1,2	103 805	rupture
12	1,2	64 025	rupture
13	1,6	7 169	base
14	1	1 356 578	base
15	0,8	2 215 847	base
16	0,8	1 168 635	base

Построение средней усталостной кривой начинаем с рассмотрения степенной (4) и экспоненциальной (5) моделей, k = 2. Рассматриваем выборку из образцов, доведенных до разрушения, X_{run} (наблюдения №1-12), n = 12, число уровней нагрузки m = 5.

- 1. Действуем аналогично примеру раздела 14.1 (п. 1-3). На рисунке 14 приведены графики зависимости остатков от независимой переменной и графики квантилей, а в таблице 13 значения статистик;
- 2. Делаем вывод: остатки регрессии модели (4) проходят как визуальную проверку на нормальность и на однородность дисперсии, так и формальные тесты на нормальность, однородность дисперсии и автокорреляцию, а остатки регрессии модели (5) не проходят тест Дарбина-Уотсона на автокорреляцию. Автокорреляция остатков модели (5) заметна и на графике зависимости остатков от $\Delta \varepsilon$ на рисунке $14 \ \delta$) с ростом $\Delta \varepsilon$ остатки сначала уменьшаются, а после увеличиваются (такое поведение говорит о том, что в модель следует добавить квадратичное слагаемое);
- 3. Так как требования к остаткам не пройдены моделью (5), проверяем выборку на наличие влиятельных наблюдений и выбросов. Критическое значение превышает только величина $DFFITS_i$ для наблюдений 3 и 11. Этого недостаточно для того, чтобы назвать наблюдения 3 и 11 выбросами и отправить на экспертную оценку (см. раздел 11.6). Влиятельные наблюдения и выбросы не обнаружены;
- 4. Вычисляем статистику теста Фишера для проверки адекватности модели (4) (см. раздел 11.5). Сравниваем ее с критическим значением, определенным по таблице 7 приложения А. Степенная модель (4) не проходит проверку на адекватность;
- 5. Перейдем к рассмотрению полиномиальных моделей (6) и (7) второй степени, k=3. Для каждой из моделей (6) и (7) при k=3 формируем матрицу регрессоров (15), вычисляем оценки параметров \widetilde{A}_1 , \widetilde{A}_2 и \widetilde{A}_3 (14), остатки регрессии (16) и СКО (17). Строим графики зависимости остатков от $\lg(\Delta\epsilon)$ для модели (6) и от $\Delta\epsilon$ для модели (7), графики квантилей (рисунок 15), статистику критерия Шапиро-Уилка (см. раздел 11.1). Вычисляем статистику для критерия Бреуша-Пагана. Критерий Уайта неприменим в виду недостаточного числа уровней нагрузки (см. раздел 11.2). Вычисляем статистику Дарбина-Уотсона (см. раздел 11.4). Сравниваем полученные значения статистик с критическими значениями;
- 6. Делаем вывод: остатки регрессии полиномиальных моделей (6) и (7) второй степени проходят как визуальную проверку на нормальность и на однородность дисперсии, так и формальные тесты на нормальность, однородность дисперсии и автокорреляцию;

- 7. Вычисляем статистику теста Фишера для проверки адекватности моделей (см. раздел 11.5). Сравниваем ее с критическим значением, определенным по таблице 7 приложения А. Обе модели проходят проверку на адекватность;
- 8. На основании меньшего СКО, вычисленного по формуле (17), выбираем модель (7).
- 9. Несмотря на то, что в таблице 12 есть результаты для отстоявших базу образцов, учитывать их не следует, так как для построения кривой выбрана линейная по параметрам модель (7).
- 10. Так как объем выборки n = 12 недостаточен для использования толерантных коэффициентов 2 и 3 для построения базисных кривых (90%/0,95) и (99%/0,95) соответственно, толерантные коэффициенты выбираем по таблицам 9 и 10 приложения А.

Результаты обработки данных с использованием полиномиальных моделей второго порядка (6) и (7) сведены в таблицу 14. Итоговые средняя и базисные усталостные кривые приведены на рисунке 16.

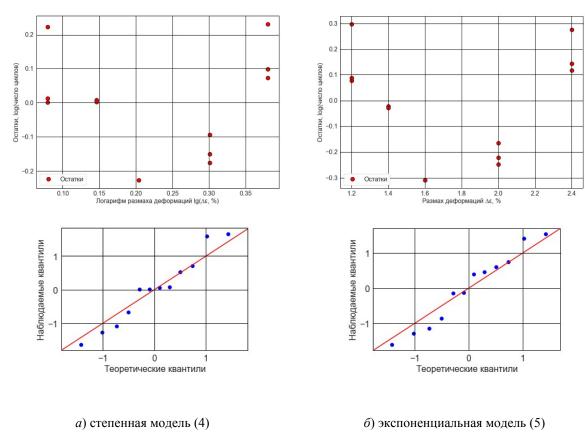


Рисунок 14. Анализ распределения остатков регрессии: Ti-6Al-4V ELI, $T=20\,^{\circ}$ C, жесткий цикл, $R_{\varepsilon}=-1\,[27]$

Таблица 13. Результаты обработки данных с использованием степенной и экспоненциальной моделей: Ті-6Al-4V ELI, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [27]

		Постр	оение сред	дней устало	остной і	кривой					
		Анализ	остатков			Влиятельные наблюдения и выбросы					
	Шапиро-	Уайт	Бреуш-	Дарбин-	F_1	H_{ii}	r_i	t_i	D_i	$DFFITS_i$	
	Уилк		Паган	Уотсон							
				Критич	еские з	начения	Я				
Модель	0,859	5,991	5,991	0,809	4,347	0,333	2; -2	3,808	0,4	0,894	
	Значения статистик						Макси	мальны	е значе	КИН	
			статистик/номера возможных								
							влиятельных наблюдений и выбросов				
Степенная (4)	0,949	0,194	0,365	1,043	8,705	-	-	-	-	-	
Экспоненциальная	0,946	0,312	0,217	0,788	-	макс.	макс.	макс.	макс.	№3: 1,09;	
(5)						знач.	абс.	абс.	знач.	№11:	
	[']					0,217	знач.	знач.	0,324	1,064	
							1,874	2,072			

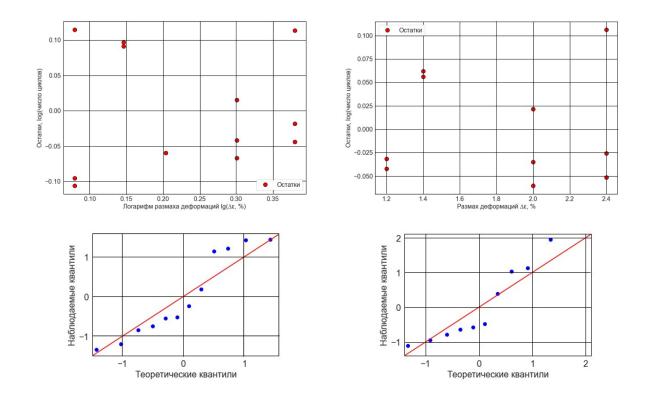


Рисунок 15. Анализ распределения остатков регрессии: Ti-6Al-4V ELI, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-$ 1 [27]

 δ) полиномиальная модель (7), k=3

a) полиномиальная модель (6), k=3

Ревизия 01

Таблица 14. Результаты обработки данных с использованием полиномиальных моделей второй степени: Ti-6Al-4V ELI, $T=~20~^{\circ}\mathrm{C},$ жесткий цикл, $~R_{\varepsilon}=-~1~[27]$

		Постро	ение сред	ней усталос	тной кри	вой				
			остатков	<u> </u>						
	Шапиро-		Бреуш-	Дарбин-	-					
	Уилк	Уайт	Паган	Уотсон	F_1	SD	R^2	F_2	AIC	
				Критиче	неские значения					
	0,859	-	7,815	0,809	3,257	-	-	3,007	-	
				Значен	ия статис	тик				
Модель										
Полиномиальная	0,878	-	5,927	2,376	1,977	0,092	0,988	368,755	-24,89	
модель (6), $k = 3$										
Полиномиальная	0,922	-	2,265	2,650	0,971	0,083	0,990	452,772	-27,32	
модель $(7), k = 3$										
Уравнение кривой			lgN_f^{mean}	$(\triangle \varepsilon) = 10,2$	18-5,924	·Δε+1,23.	$3\cdot\Delta\epsilon^2$			
		Построе	ение базис	ных устало	стных кр	ивых				
Базис	Толерантн	ый коэф	фициент <i>l</i>	<i>I</i> Уравне	ние крив	ой				
(90%/0,95)	2,319	lgN_f^{basi}	$lgN_f^{basis}(\Delta \varepsilon) = 10,026-5,924\cdot\Delta\varepsilon+1,233\cdot\Delta\varepsilon^2$							
(99%/0,95)	3,957			lgN_f^{basi}	$lgN_f^{basis}(\Delta \varepsilon) = 9,890-5,924\cdot\Delta\varepsilon+1,233\cdot\Delta\varepsilon^2$					

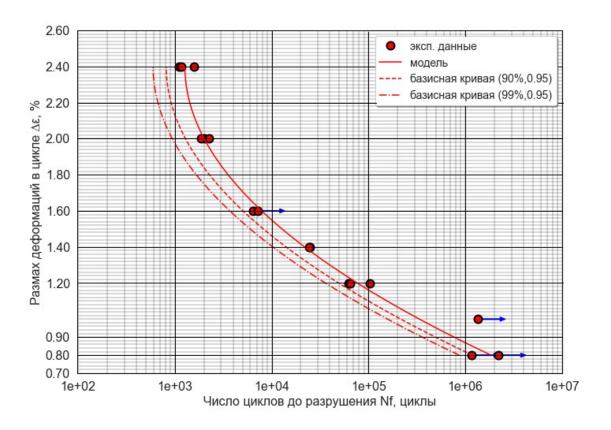


Рисунок 16. Средние и базисные усталостные кривые: Ti-6Al-4V ELI, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл $R_{\varepsilon}=-1$ [27]

14.4 Результаты обработки данных испытаний Inconel на МЦУ в условиях жесткого симметричного цикла с использованием степенной и экспоненциальной моделей и полиномиальных моделей второй и третьей степеней

Таблица 15. Результаты испытаний: Inconel, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

Порядковый	Размах деформаций	Циклическая	Информация об окончании
номер	Δε, %	долговечность N_f	испытания
1	8,052	2	rupture
2	6,54	4	rupture
3	5,284	6	rupture
4	5,108	9	rupture
5	4,44	37	rupture
6	4,218	41	rupture
7	4,194	50	rupture
8	3,746	79	rupture
9	3,598	89	rupture
10	3,162	137	rupture
11	2,696	261	rupture
12	2,514	193	rupture
13	2,306	282	rupture
14	2,294	220	rupture
15	1,666	296	rupture
16	1,64	779	rupture
17	1,624	813	rupture
18	1,304	1 080	rupture
19	1,086	1 580	rupture
20	0,914	5 210	rupture
21	0,86	5 160	rupture
22	0,792	7 800	rupture
23	0,79	6 440	rupture
24	0,772	9 940	rupture
25	0,69	9 400	rupture
26	0,658	18 400	rupture
27	0,608	36 400	rupture
28	0,548	47 500	rupture
29	0,5	99 800	rupture
30	0,44	125 000	rupture
31	0,4	267 000	rupture
32	0,4	395 000	rupture
33	0,368	688 000	rupture

Построение средней усталостной кривой начинаем с рассмотрения степенной (4) и экспоненциальной (5) моделей, k=2. Рассматриваем выборку из образцов, доведенных до разрушения, X_{rup} (наблюдения №1-33), n=33, число уровней нагрузки m=31.

- 1. Действуем аналогично примеру раздела 14.1 (п. 1-3). На рисунке 17 приведены графики зависимости остатков от независимой переменной и графики квантилей, а в таблице 16 значения статистик;
- 2. Делаем вывод: остатки регрессии моделей (4) и (5) не проходят формальный тест на автокорреляцию, остатки регрессии модели (5) также не проходят проверки на

Ревизия 01

нормальность и однородность дисперсии по критерию Уайта. Автокорреляция остатков моделей (4) и (5) заметна и на графиках зависимости остатков от $\lg \Delta \varepsilon$ и $\Delta \varepsilon$ на рисунке 17. Отметим, что остатки сначала убывают, меняют знак с плюса на минус, после возрастают, снова меняют знак, и, наконец, убывают. Такой характер зависимости остатков от независимой переменной говорит о S-образном виде требуемой кривой, который можно получить, используя кубические (k = 4) полиномиальные модели (6) и (7).

- 3. Так как требования к остаткам не пройдены, проверяем выборку на наличие влиятельных наблюдений и выбросов (см. табл. 16). При анализе остатков модели (4) обнаружены влиятельные наблюдения №1, 33 и выброс №33. На экспертную оценку следует направить наблюдение №33. При анализе остатков модели (5) обнаружены влиятельные наблюдения №1, 2, 32 и 33 и выбросы № 1, 33. На экспертную оценку следует направить наблюдения №1, 33 (см. раздел 11.6).
- 4. Проведем анализ остатков модели (4) после исключения из выборки наблюдения №33 и анализ остатков модели (5) после исключения из выборки наблюдений №1, 33. Результаты приведены в таблице 17: значимая автокорреляция сохраняется, что говорит о неверном выборе модели. Этот результат ожидаем, так как исключение единичных наблюдений без смены модели не способно устранить ярко выраженную S-образную форму графиков зависимости остатков от независимой переменной (см. рис. 17).

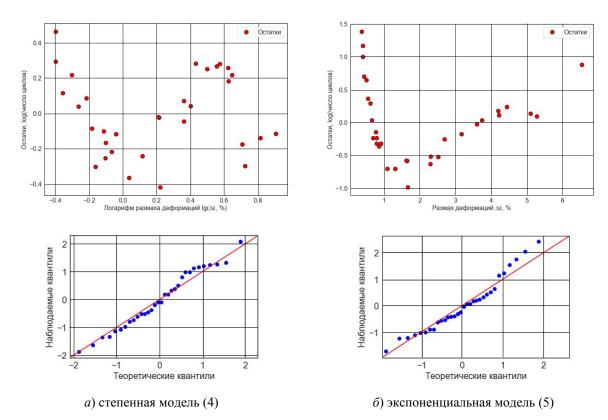


Рисунок 17. Анализ распределения остатков регрессии: Inconel, $T=20\,^{\circ}\text{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23] Таблица 16. Результаты обработки данных с использованием степенной и экспоненциальной моделей:

Inconel, T=20 °C, жесткий цикл, $R_{\varepsilon}=-1$ [23]

		Пост	гроение сј	редней уста	лостной	кривой				
		Анализ	остатков		Влиятельные наблюдения и выбросы					
	Шапиро	Уайт	Бреуш	Дарбин-	H_{ii}	r_i	t_i	D_i	DFFITS _i	
	-Уилк		-Паган	Уотсон						
	Критические значения									
Модель	0,931	5,991	5,991	1,321	0,121	2; -2	2,037	0,129	0,508	
	3	статисти	К	Максимальные значения статистик/номера						
			BO31	можных в			одений и			
					выбросов					
Степенная (4)	0,973	1,083	1,711	0,517	№ 1:	№33:	№33:	№33:	№33: 0,815	
					0,131	2,270	2,417	0,195		
Экспоненциальн	0,907	6,368	0,423	0,164	№ 1:	№ 1:	№33:	№ 1:	№1: 1,605;	
ая (5)					0,294;	2,367;	2,688	0,776	№32: 0,547;	
					№2:	№32:			№33: 0,667	
					0,174	2,106;				
						№33:				
						2,472				

Таблица 17. Результаты обработки данных с использованием степенной и экспоненциальной моделей с устранением нетипичных наблюдений: Inconel, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

Анал	пиз остатков после	исключения выбро	СОВ						
Модель	Шапиро-Уилк	Уайт	Бреуш-Паган	Дарбин-					
				Уотсон					
		Критические	значения						
	0,930	5,991	5,991	1,309					
	Значения статистик								
Степенная (4) без № 33	0,968	0,356	0,446	0,601					
		Критические	значения						
	0,927	5,991	5,991	1,284					
		Значения статистик							
Экспоненциальная (5) без № 1, 33	0,953	3,682	2,589	0,188					

- 5. Перейдем к рассмотрению полиномиальных моделей (6) и (7) второй k=3 и третьей k=4 степеней. Для каждой из моделей (6) и (7) формируем матрицу регрессоров (15), вычисляем оценки параметров \widetilde{A}_1 , \widetilde{A}_2 и \widetilde{A}_3 при k=3 и \widetilde{A}_1 , \widetilde{A}_2 , \widetilde{A}_3 и \widetilde{A}_4 при k=4 (14), остатки регрессии (16) и СКО (17). Строим графики зависимости остатков от $\lg(\Delta\epsilon)$ для модели (6) и от $\Delta\epsilon$ для модели (7), графики квантилей (рисунки 18, 19), статистику критерия Шапиро-Уилка (см. раздел 11.1). Вычисляем статистики для критериев Уайта и Бреуша-Пагана (см. раздел 11.2). Вычисляем статистику Дарбина-Уотсона (см. раздел 11.4). Сравниваем полученные значения статистик с критическими значениями (таблица 18);
- 6. Полиномиальные модели (6) и (7) второй степени (k=3) и модель (7) третьей степени (k=4) не проходят проверку на автокорреляцию. S-образная форма графиков зависимостей остатков от независимой переменной для моделей второй степени сохраняется (см. рис. 18), что говорит о необходимости выбора модели третьей степени.
 - 7. Полиномиальная модель (6) третьей степени проходит все формальные тесты,

кроме теста на нормальность Шапиро-Уилка. Согласно алгоритму (см. рис. 2) это не является препятствием для выбора модели при выполнении требований к однородности остатков и отсутствии значимой автокорреляции, но следует проверить данные на наличие влиятельных наблюдений и выбросов. Полиномиальная модель (7) третьей степени демонстрирует значимую автокорреляцию остатков. Проверим данные на выбросы при использовании моделей третьей степени.

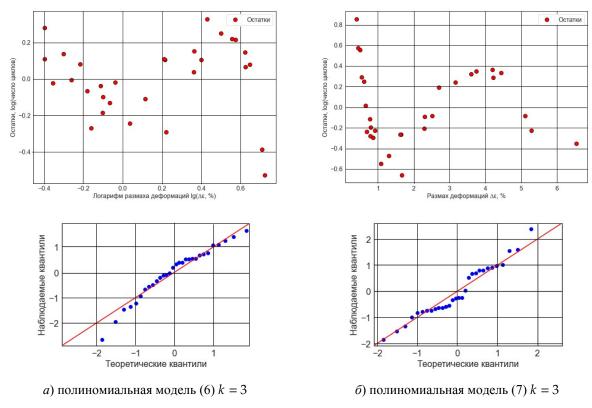


Рисунок 18. Анализ распределения остатков регрессии: Inconel, $T=20\,^{\circ}\text{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

- 8. При анализе остатков модели (6) третьей степени обнаружены влиятельные наблюдения №1, 3, 4 и 15 и выбросы №1, 3 и 15. На экспертную оценку следует направить наблюдения №1, 3, 15. При анализе остатков модели (7) третьей степени обнаружены влиятельные наблюдения №1, 2 и 33 и выбросы № 1, 2, 3, 33. На экспертную оценку следует направить наблюдения №1, 2, 3, 33 (см. раздел 11.6).
- 9. Построим модели (6) и (7) для выборок с устраненными выбросами и проанализируем остатки (таблица 19). Автокорреляция для модели (7) сохраняется, модель не может быть выбрана даже после устранения выбросов. Остатки же модели (6) проходят проверку по всем критериям после устранения выбросов. На рисунке 20 приведены средние кривые, построенные по исходной выборке (красная кривая) и по выборке без выбросов (желтая кривая) с использованием модели (7) третьей степени, а также отмечены влиятельные наблюдения и выбросы.

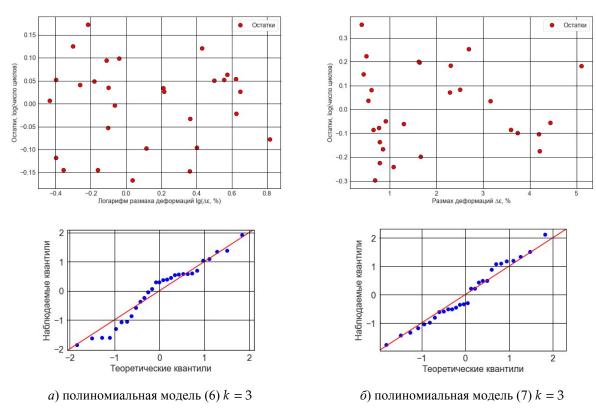


Рисунок 19. Анализ распределения остатков регрессии: Inconel, T=20 °C, жесткий цикл, $R_{\varepsilon}=-1$ [23]

- 10. Для построения средней кривой выбрана полиномиальная модель (6) третьей степени. Выбросы устранять не следует, так как экспертная оценка не проводилась. Оценка СКО составила SD = 0.148, а коэффициент детерминации $R^2 = 0.991$. Несмотря на то, что в таблице 15 есть результаты для отстоявших базу образцов, учитывать их не следует, так как для построения кривой выбрана линейная по параметрам модель (6).
- 11. Объем выборки n = 33 недостаточен для использования толерантного коэффициента 3 для построения базисной кривой (99%/0,95), толерантный коэффициент выбираем по таблице 9 приложения А. Для построения базисной кривой (90%/0,95) следует использовать толерантный коэффициент, равный 2. Итоговые средняя и базисные усталостные кривые приведены на рисунке 21.

Таблица 18. Результаты обработки данных с использованием полиномиальных моделей второй и третьей степеней: Inconel, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

степеней. Inconei, 1	- 20°C, ж										
		Постро	ение с	редн	ней усталос	тной	і кр	оивой	-		
					Аналі	из ос	тат	ков			
	Шапиј	о-Уилк		Уайт Бреуш-Паган						Дарбин-	Уотсон
					Критиче	ские	ЗН	ачения			
	0,	931			9,488	Ĭ		7,815	5	1,32	21
Модель			Значени			ия ст	гаті	истик			
Полиномиальная	0,	941			3,318			4,362	2	0,59	93
модель (6), $k = 3$											
Полиномиальная	0,	963			3,172			4,186	5	0,2	12
модель (7) , $k = 3$											
Модель		Анализ (остать	ков	,	<u> </u>	Вл	иятельн	ые набл	іюдения и вь	ібросы
	Шапиро-		Бреу	уш-	Дарбин-	H_{i}	ii	r_i	t_i	D_i	DFFITS _i
	Уилк	Уайт	Паг	ан	Уотсон						
		1			Критиче	ские	3Н	ачения	1	L	L
	0,931	12,592	9,4	88	1,321	0,24		2; -2	2,037	0,138	0,743
	Значения статист					Максимальные значения статистик/ном					ик/номера
							303N	хынжом	влиятел	тьных наблю	дений и
									выб	росов	
Полиномиальная	0,914	1,905	3,60	05	1,507	№ 1		№3: -	№3:	№1: 0,448	№ 1:
модель (6), $k = 4$						0,33	32	2,836	3,170	№3: 0,331	1,171
								№4: -		№4: 0,151	№3:
								2,006		№15: 0,163	1,114
								№15:			№15:
П	0,965	1,268	2,0	01	1,019	№ 1		-2,470 №1:	№ 1:	№1: 31,573	0,759 №1:
Полиномиальная	0,903	1,200	2,0	01	1,019	0,91		2,901	2,888	№2: 0,279	9,688
модель (7) , $k = 4$						\ No2		Nº33:	2,000	№3: 0,247),000 №2:
						0,29		2,426		№32: 0,145	0,921
						-,		_,		№33:	№3:
										0,263	0,879
										0,200	№33:
											0,956
Уравнение кривой			lσN¹	mean	$(\triangle \varepsilon) = 3,4$	74-3.	.49	 9·Λε+2.8	∟ 65∙Δε²-	.3.417·Δε ³	0,200
1 F			,	<u>, </u>							
Г					ных устало	стны	ХК	ривых			
Базис	Толерантн коэффицие	ент И									
(90%/0,95)	2		lgN	basis f	$(\triangle \varepsilon) = 3,1$	78-3	,499	9·lg(Δε)+	+2,865·l	$g(\Delta \varepsilon)^2$ -3,417	$\log(\Delta\epsilon)^3$
(99%/0,95)	3,057		lgN	basis f	$(\triangle \varepsilon) = 3.0$	178-3,499·lg(Δ ε)+2,865·lg(Δ ε) ² -3,417·lg(Δ ε) ³ 222-3,499·lg(Δ ε)+2,865·lg(Δ ε) ² -3,417·lg(Δ ε) ³					

Таблица 19. Результаты обработки данных с использованием полиномиальных моделей третьей степени с устранением нетипичных наблюдений: Inconel, $T=20\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

Анал	из остатков после	исключения в	ыбросов					
Модель	Шапиро-Уилк	Уайт	Бреуш-Паган	Дарбин-Уотсон				
		Критич	еские значения					
	0,927	12,592	9,488	1,284				
Полиномиальная модель (6), $k = 4$	Значения статистик							
без № 1, 3, 15	0,942	0,205	0,138	2,083				
	Шапиро-Уилк	Уайт	Бреуш-Паган	Дарбин-Уотсон				
		Критич	еские значения					
	0,926	12,592	9,488	1,270				
Полиномиальная модель (7) , $k = 4$		Значен	ния статистик					

без № 1, 2, 3, 33	0,964	1,247	1,609	0,852

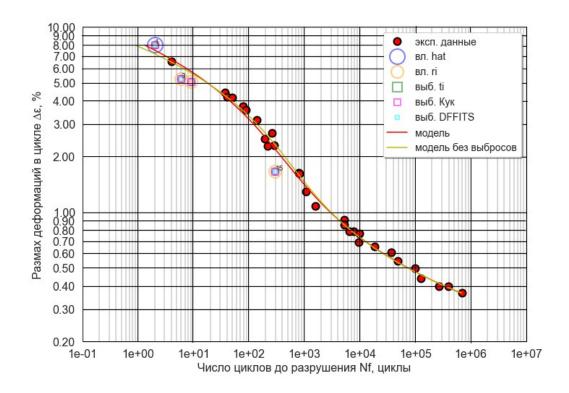


Рисунок 20. Средние усталостные кривые, построенные по полиномиальной модели (7) третьего порядка для исходной выборки и выборки после устранения выбросов: Inconel, $T=20\,^{\circ}$ C, жесткий цикл, $R_{\epsilon}=-1$ [23]: вл. hat — влиятельное наблюдение согласно (57); вл. ri — влиятельное наблюдение согласно (58); выб. ti — выброс согласно (60); выб. Кук — выброс согласно (63); выб. DFFITS — выброс согласно (64)

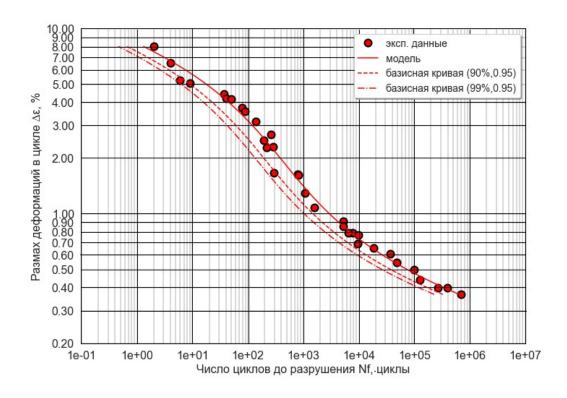


Рисунок 21. Средние и базисные усталостные кривые: Inconel, $T=20\,^{\circ}$ С, жесткий цикл, $R_{\varepsilon}=-1$ [23]

14.5 Результаты обработки данных испытаний X10CrNiTi189 на МЦУ в условиях жесткого симметричного цикла с использованием степенной и экспоненциальной моделей, полиномиальных моделей второй степени и нелинейных по параметрам моделей

Таблица 20. Результаты испытаний:	X10CrNiTi189, T	$^{\circ} = 23 ^{\circ} \text{C},$	жесткий цикл,	$R_c = -1$	[23]

Порядковый	Размах деформаций	Циклическая	Информация об окончании
номер	$\Delta \epsilon$, %	долговечность N_f	испытания
1	2,4	471	rupture
2	2,4	500	rupture
3	1,4	1 666	rupture
4	1,4	2 100	rupture
5	1,4	2 200	rupture
6	1	5 150	rupture
7	1	5 709	rupture
8	1	6 324	rupture
9	0,8	12 990	rupture
10	0,8	16 000	rupture
11	0,6	41 500	rupture
12	0,6	54 000	rupture
13	0,5	89 000	rupture
14	0,5	89 600	rupture
15	0,46	110 000	rupture
16	0,46	114 000	rupture
17	0,46	132 000	rupture
18	0,44	325 000	rupture
19	0,44	335 000	rupture
20	0,44	420 000	rupture
21	0,44	4 940 000	base
22	0,44	5 300 000	base

Построение средней усталостной кривой начинаем с рассмотрения степенной (4) и экспоненциальной (5) моделей, k = 2. Рассматриваем выборку из образцов, доведенных до разрушения, X_{run} (наблюдения №1-20), n=20, число уровней нагрузки m=8.

- 1. Действуем аналогично примеру раздела 14.1 (п. 1-3). На рисунке 22 приведены графики зависимости остатков от независимой переменной и графики квантилей, а в таблице 21 – значения статистик;
- 2. Делаем вывод: остатки регрессии моделей (4) и (5) не проходят формальный тест на автокорреляцию, остатки регрессии модели (5) также не проходят проверки на нормальность. Автокорреляция остатков моделей (4) и (5) заметна и на графиках зависимости остатков от $\lg \Delta \varepsilon$ и $\Delta \varepsilon$ на рисунке 22. Отметим, что остатки сначала убывают, после возрастают, что говорит о необходимости включения квадратичных членов в модель или использовании нелинейных моделей (8)-(10).

Таблица 21. Результаты обработки данных с использованием степенной и экспоненциальной моделей: X10CrNiTi189, $T=23\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

		Пос	троение о	средней ус	сталостно	й кривоі	Í		
		Анализ	остатков		В	лиятелы	ные наблю	дения и вы	бросы
	Шапиро-	Уайт	Бреуш-	Дарбин-	H_{ii}	r_i	t_i	D_i	DFFITS _i
	Уилк		Паган	Уотсон					
				Кри	тические	значени	RI		
Модель	0,905	5,991	5,991	1,103	0,2	-2; 2	3,543	0,222	0,667
	31	начения	статисти	К	Мак	симальн	ые значен	ия статисти	к/номера
					возможных влиятельных наблюдений и				
							выбро	СОВ	
Степенная (4)	0,820	2,951	0,531	0,584	№ 1:	№20:	макс.	№1: 0,229	№1: 0,841
					0,256	2,410	абс.	№2: 0,291	№2: 0,959
					№2:		знач.	№20:	№20:
					0,256		2,757	0,226	0,942
Экспоненциальн	0,903	0,947	1,553	0,406	№ 1:	макс.	макс.	№1: 0,510	№1: 1,265
ая (5)					0,361	абс.	абс.	№2: 0,567	№2: 1,341
					№ 2:	знач.	знач.		
					0,361	1,830	1,948		

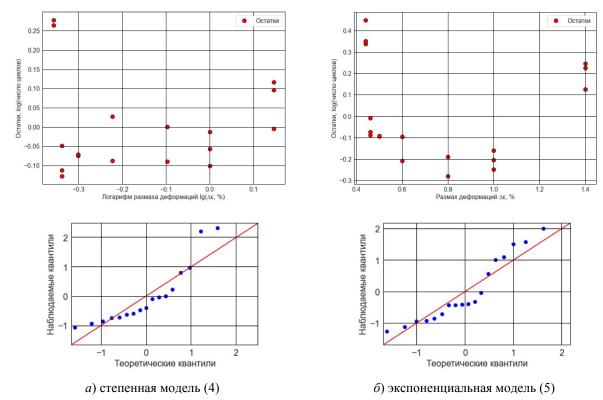


Рисунок 22. Анализ распределения остатков регрессии: X10CrNiTi189, $T=23\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

3. При анализе остатков модели (4) обнаружены влиятельные наблюдения, которые одновременно являются и выбросами: №1, 2 и 20. Их следует направить на экспертную оценку. При анализе остатков модели (5) обнаружены влиятельные наблюдения и выбросы №1, 2, которые следует направить на экспертную оценку (см. раздел

11.6). После исключения формально найденных выбросов, автокорреляция не пропадает.

- 4. Перейдем к рассмотрению полиномиальных моделей (6) и (7) второй k=3 степени. Для каждой из моделей (6) и (7) формируем матрицу регрессоров (15), вычисляем оценки параметров \widetilde{A}_1 , \widetilde{A}_2 и \widetilde{A}_3 (14), остатки регрессии (16) и СКО (17). Строим графики зависимости остатков от $\lg(\Delta\epsilon)$ для модели (6) и от $\Delta\epsilon$ для модели (7), графики квантилей (рисунок 23), статистику критерия Шапиро-Уилка (см. раздел 11.1). Вычисляем статистики для критериев Уайта и Бреуша-Пагана (см. раздел 11.2). Вычисляем статистику Дарбина-Уотсона (см. раздел 11.4). Сравниваем полученные значения статистик с критическими значениями (таблица 22);
- 5. Обе полиномиальные модели второй степени демонстрируют значимую автокорреляцию. Остатки модели (6) не удовлетворяют критерию Бреуша-Пагана, а модели (7) критерию Шапиро-Уилка.

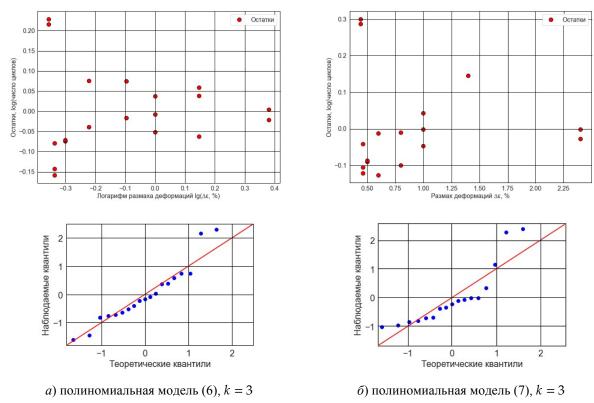


Рисунок 23. Анализ распределения остатков регрессии: X10CrNiTi189, T=23 °C, жесткий цикл, $R_{\varepsilon}=-1$ [23]

6. При анализе остатков модели (6) второй степени обнаружены влиятельные наблюдения №1, 3 и 20 и выброс № 20. На экспертную оценку следует направить наблюдение №20. При анализе остатков модели (7) второй степени обнаружены влиятельные наблюдения №1, 2, 3, 4, 5 и 20 и выбросы № 4, 5 и 20. На экспертную оценку следует направить наблюдения № 4, 5 и 20 (см. раздел 11.6). После исключения формально

найденных выбросов, автокорреляция не пропадает.

7. Перейдем к рассмотрению нелинейных по параметрам моделей (8)-(10). Для модели (8) вычисляем оценки параметров \widetilde{A}_1 , \widetilde{A}_2 и \widetilde{A}_3 , а для моделей (9) и (10) — оценки параметров \widetilde{A}_1 , \widetilde{A}_2 , \widetilde{A}_3 и \widetilde{A}_4 , остатки регрессии (16) и СКО (17). Строим графики зависимости остатков от $\Delta \varepsilon$ для модели (8), от $\lg N_f$ для модели (9) и от N_f для модели (10), графики квантилей (рисунок 24). Вычисляем статистику критерия Шапиро-Уилка (см. раздел 11.1). Вычисляем статистику Дарбина-Уотсона (см. раздел 11.4). Сравниваем полученные значения статистик с критическими значениями (таблица 23);

Таблица 22. Результаты обработки данных с использованием полиномиальных моделей третьей степени: X10CrNiTi189, T=23 °C, жесткий цикл, $R_{\rm s}=-1$ [23]

			, , ,								
		Пос	троение с	редней уста	лостной крив	ой					
		Анализ	остатков		Влияте	льные наб	людени	я и выбр	осы		
	Шапир	Уайт	Бреуш-	Дарбин-	H_{ii}	r_i	t_i	D_i	DFFITS _i		
	о-Уилк		Паган	Уотсон							
		Критические значения									
Модель	0,905	12,592	9,488	1,103	0,3	-2; 2	3,581	0,235	0,840		
		Значения	я статисти	К	Максимал	іьные знач	ения ста	тистик/і	номера		
						возможных влиятельных наблюдений и					
					выбросов						
Полиномиальн	0,970	10,582	11,090	0,742	№1: 0,453	№20:	макс.	№20:	№20:		
ая модель (6),					№2:	2,560	абс.	0,359	1,206		
k = 3					0,453		знач.				
							2,974				
Полиномиальн	0,844	1,956	2,930	0,578	№1: 0,500	№20:	макс.	№ 4:	№4:		
ая модель (7),					№2: 0,500	2,531	абс.	0,248	0,866		
k = 3					№3: 0,316		знач.	№ 5:	№ 5:		
					№4: 0,316		2,925	0,312	0,978		
					№5: 0,316			№ 20:	№20:		
								0,362	1,204		

- 8. Модель (8) демонстрирует значимую автокорреляцию остатков. Так как модель Коффина-Мэнсона-Басквина и билинейная модель имеют одну зависимую переменную $\Delta \varepsilon$ и одно число параметров, их можно сравнить по любому из показателей SD, R^2 или AIC наилучшей из рассмотренных моделей является модель Коффина-Мэнсона-Басквина. Оценка СКО составила SD=0.039, а коэффициент детерминации $R^2=0.966$.
- 9. Несмотря на то, что в таблице 20 есть результаты для отстоявших базу образцов, учитывать их не следует, так как отстоявшие базу образцы имеются только на одном уровне нагрузки и их число не превышает 50% испытанных на этом уровне нагрузки образцов.

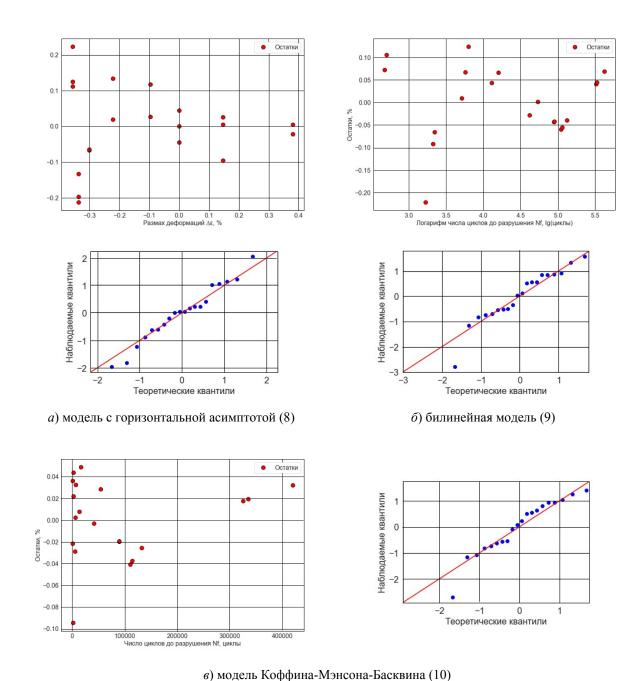


Рисунок 24. Анализ распределения остатков регрессии: X10CrNiTi189, $T=23\,^{\circ}\mathrm{C}$, жесткий цикл, $R_{\varepsilon}=-1$ [23]

10. Объем выборки n = 20 недостаточен для использования толерантного коэффициента 3 для построения базисной кривой (99%/0,95), толерантный коэффициент выбираем по таблице 9 приложения А. Для построения базисной кривой (90%/0,95) следует использовать толерантный коэффициент, равный 2. Итоговые средняя и базисные усталостные кривые приведены на рисунке 25. Серыми штриховыми линиями обозначены слагаемые $A_1 \cdot N_f^{A_3}$ и $A_2 \cdot N_f^{A_4}$.

11. С целью демонстрации уточнения средней и базисных кривых путем учета

Ревизия 01 ИМ-21.33-05

отстоявших базу образцов на рисунке 26 приведены кривые, построенные с учетом отстоявших базу образцов №21 и 22 (синие кривые), в сравнении с кривыми, построенными без учета отстоявших базу образцов (красные кривые).

Таблица 23. Результаты обработки данных с использованием нелинейных моделей: X10CrNiTi189, T = 23 °C, жесткий цикл, R_{ε} = – 1 [23]

	Построе	ние средней усталост	ной кривой					
	Анали	з остатков						
			SD	R^2	AIC			
	Шапиро-Уилк	Дарбин-Уотсон						
		Критиче	ские значени	Я				
Модель	0,905	1,103	-	-	-			
	Значения статистик							
С горизонтальной	0,976	0,840	0,118	0,966	-22,9			
асимптотой (8)								
Билинейная (9)	0,934	1,309	0,089	0,982	-33,5			
Коффина-Мэнсона-	0,932	2,151	0,039	0,996	-66,1			
Басквина (10)								
Уравнение кривой		$\Delta \varepsilon = 42,531 \cdot N_f^{-0.51} + 0,913 \cdot N_f^{-0.074}$						
	Построен	ие базисных усталост	ных кривых					
Базис	Толерантный	Уравнение кривой						
	коэффициент <i>U</i>							
(90%/0,95)	2	$lg \triangle arepsilon^{basis} ig(N_fig)$						
(99%/0,95)	3,441	$lg\Delta arepsilon^{basis}ig(N_fig)$	$= 42,531 \cdot N_f^{-1}$	$^{0,51} + 0,913 \cdot N_f^{-0}$	0.074 - 0.134			

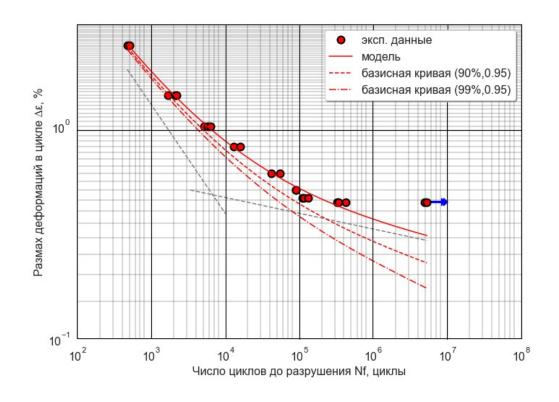


Рисунок 25. Средние и базисные усталостные кривые: X10CrNiTi189, $T=23\,^{\circ}$ C, жесткий цикл, $R_{\varepsilon}=-1$ [23]

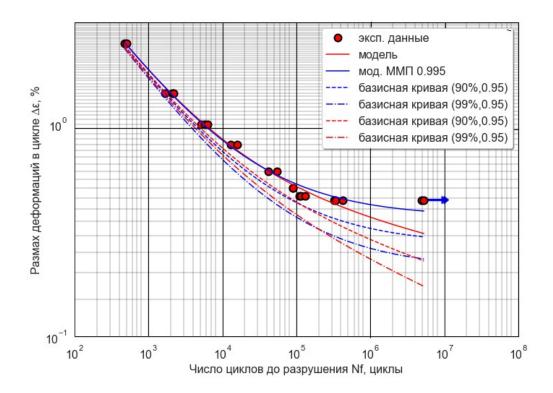


Рисунок 26. Средние и базисные усталостные кривые для X10CrNiTi189, $T=23\,^{\circ}$ C, $R_{\varepsilon}=-1\,[23]$ без учета (красные кривые) и с учетом (синие кривые) отстоявших базу образцов

Приложение А

Таблицы для определения необходимых квантилей, статистик и коэффициентов

Таблица 1. Квантили стандартного нормального распределения \boldsymbol{u}_{p}

		р								
	0,9	0,95	0,975	0,995	0,99					
u_p	1,281552	1,644854	1,959964	2,575829	3,090232					

Таблица 2. Значения a_{n-i+1} для проверки на нормальность по критерию Шапиро-Уилка

						ı				
i	1	2	3	4	5	6	7	8	9	10
1	_	_		_	_	_	_	0,6052	0,5888	0,5739
2	_	_	_	_	_	—	_	0,3164	0,3244	0,3291
3	_	_	_	_	_	_	_	0,1743	0,1976	0,2141
4	_	_	_	_	_	_	_	0,0561	0,0947	0,1224
5		_				_			_	0,0399
	11	12	13	14	15	16	17	18	19	20
1	0,5601	0,5475	0,5359	0,5251	0,5150	0,5056	0,4968	0,4886	0,4808	0,4734
2	0,3315	0,3325	0,3325	0,3318	0,3306	0,3290	0,3273	0,3253	0,3232	0,3211
3	0,2260	0,2347	0,2412	0,2460	0,2495	0,2521	0,2540	0,2553	0,2561	0,2565
4	0,1429	0,1586	0,1707	0,1802	0,1878	0,1939	0,1988	0,2027	0,2059	0,2085
5	0,0695	0,0922	0,1099	0,1240	0,1353	0,1447	0,1524	0,1587	0,1641	0,1686
6		0,0303	0,0539	0,0727	0,0980	0,1005	0,1109	0,1197	0,1271	0,1334
7		_		0,0240	0,0433	0,0593	0,0725	0,0737	0,0932	0,1013
8	_	_	_	_	_	0,0196	0,0359	0,0496	0,0612	0,0711
9	_	_	_	_	_	_	_	0,0163	0,0303	0,0422
10	_	_	_	_	_	_	_	_	_	0,0140
	21	22	23	24	25	26	27	28	29	30
1	0,4643	0,4590	0,4542	0,4493	0,4450	0,4407	0,4366	0,4328	0,4291	0,4254
2	0,3185	0,3156	0,3126	0,3098	0,3069	0,3043	0,3018	0,2992	0,2968	0,2944
3	0,2578	0,2571	0,2563	0,2554	0,2543	0,2533	0,2522	0,2510	0,2499	0,2487
4	0,2119	0,2131	0,2139	0,2145	0,2148	0,2151	0,2152	0,2151	0,2150	0,2148
5	0,1736	0,1764	0,1787	0,1807	0,1822	0,1836	0,1848	0,1857	0,1864	0,1870
6	0,1399	0,1443	0,1480	0,1512	0,1539	0,1563	0,1584	0,1601	0,1616	0,1630
7	0,1092	0,1150	0,1201	0,1245	0,1283	0,1316	0,1346	0,1372	0,1395	0,1415
8	0,0804	0,0878	0,0941	0,0997	0,1046	0,1089	0,1128	0,1162	0,1192	0,1219
9	0,0530	0,0618	0,0696	0,0764	0,0823	0,0876	0,0923	0,0965	0,1002	0,1036
10	0,0263	0,0368	0,0459	0,0539	0,0610	0,0672	0,0728	0,0778	0,0822	0,0862
11	_	0,0122	0,0228	0,0321	0,0403	0,0476	0,0540	0,0598	0,0650	0,0697
12	_	_		0,0107	0,0200	0,0284	0,0358	0,0424	0,0483	0,0537
13	_	_	<u> </u>	_	_	0,0094	0,0178	0,0253	0,0320	0,0381
14	_	_	_		_	_	_	0,0084	0,0159	0,0227
15		_	_			_			_	0,0076
	31	32	33	34	35	36	37	38	39	40

	0.4220	0.4100	0.4156	0.4105	0.4000	0.4060	0.4040	0.401.5	0.2000	0.2064
1	0,4220	0,4188	0,4156	0,4127	0,4098	0,4068	0,4040	0,4015	0,3989	0,3964
2	0,2921	0,2898	0,2786	0,2854	0,2834	0,2813	0,2794	0,2774	0,2755	0,2737
3	0,2475	0,2463	0,2451	0,2439	0,2427	0,2415	0,2403	0,2391	0,2380	0,2368
4	0,2155	0,2141	0,2137	0,2132	0,2127	0,2121	0,2116	0,2110	0,2104	0,2098
5	0,1874	0,1878	0,1880	0,1882	0,1883	0,1883	0,1883	0,1881	0,1880	0,1878
6	0,1641	0,1651	0,1660	0,1667	0,1673	0,1678	0,1683	0,1686	0,1689	0,1691
7	0,1433	0,1449	0,1463	0,1475	0,1487	0,1496	0,1505	0,1513	0,1520	0,1526
8	0,1243	0,1265	0,1284	0,1301	0,1317	0,1331	0,1344	0,1356	0,1366	0,1376
9	0,1066	0,1093	0,1118	0,1140	0,1160	0,1179	0,1196	0,1211	0,1225	0,1237
10	0,0899	0,0931	0,0961	0,0988	0,1013	0,1036	0,1056	0,1075	0,1092	0,1108
11	0,0739	0,0777	0,0812	0,0844	0,0873	0,0900	0,0924	0,0947	0,0967	0,0986
12	0,0585	0,0629	0,0669	0,0706	0,0739	0,0770	0,0798	0,0824	0,0848	0,0870
13	0,0435	0,0485	0,0530	0,0572	0,0610	0,0645	0,0677	0,0706	0,0733	0,0759
14	0,0289	0,0344	0,0395	0,0441	0,0484	0,0523	0,0559	0,0592	0,0622	0,0651
15	0,0144	0,0206	0,0262	0,0314	0,0361	0,0404	0,0444	0,0481	0,0515	0,0546
16	_	0,0068	0,0131	0,0187	0,0239	0,0287	0,0331	0,0372	0,0409	0,0444
17		_		0,0062	0,0119	0,0172	0,0220	0,0264	0,0305	0,0343
18						0,0057	0,0110	0,0158	0,0203	0,0244
19	_	_	_	_	_	_		0,0053	0,0101	0,0146
20	_	_	_	_	_	_			_	0,0049
	41	42	43	44	45	46	47	48	49	50
1	0,3940	0,3917	0,3894	0,3872	0,3850	0,3830	0,3808	0,3789	0,3770	0,3651
2	0,2719	0,2701	0,2684	0,2667	0,2651	0,2635	0,2620	0,2604	0,2589	0,2574
3	0,2357	0,2345	0,2334	0,2323	0,2313	0,2302	0,2291	0,2281	0,2271	0,2260
4	0,2091	0,2085	0,2078	0,2072	0,2065	0,2058	0,2052	0,2045	0,2038	0,2032
5	0,1876	0,1874	0,1871	0,1868	0,1868	0,1862	0,1869	0,1855	0,1851	0,1847
6	0,1693	0,1694	0,1695	0,1695	0,1695	0,1695	0,1695	0,1693	0,1692	0,1691
7	0,1531	0,1535	0,1539	0,1542	0,1545	0,1548	0,1550	0,1551	0,1553	0,1554
8	0,1384	0,1392	0,1398	0,1405	0,1410	0,1415	0,1420	0,1423	0,1427	0,1430
9	0,1249	0,1259	0,1269	0,1278	0,1286	0,1293	0,1300	0,1306	0,1312	0,1317
10	0,1123	0,1136	0,1149	0,1160	0,1170	0,1180	0,1189	0,1197	0,1205	0,1212
11	0,1004	0,1020	0,1035	0,1049	0,1062	0,1073	0,1085	0,1095	0,1105	0,1113
12	0,0891	0,0909	0,0927	0,0943	0,0959	0,0972	0,0986	0,0998	0,1010	0,1020
13	0,0782	0,0804	0,0824	0,0842	0,0860	0,0876	0,0892	0,0906	0,0919	0,0932
14	0,0677	0,0701	0,0724	0,0745	0,0765	0,0783	0,0801	0,0817	0,0832	0,0846
15	0,0575	0,0602	0,0628	0,0651	0,0673	0,0694	0,0713	0,0731	0,0748	0,0764
16	0,0476	0,0506	0,0534	0,0560	0,0584	0,0607	0,0628	0,0648	0,0667	0,0685
17	0,0379	0,0411	0,0442	0,0471	0,0497	0,0522	0,0546	0,0568	0,0588	0,0608
18	0,0283	0,0318	0,0352	0,0383	0,0412	0,0439	0,0465	0,0489	0,0511	0,0532
19	0,0188	0,0227	0,0263	0,0296	0,0328	0,0357	0,0385	0,0411	0,0436	0,0459
20	0,0094	0,0136	0,0175	0,0211	0,0245	0,0277	0,0307	0,0335	0,0361	0,0386
21	_	0,0045	0,0087	0,0126	0,0163	0,0197	0,0229	0,0229	0,0288	0,0314
22	_	_	_	0,0042	0,0081	0,0118	0,0153	0,0185	0,0215	0,0244
23	_	_	_	_	_	0,0039	0,0076	0,0111	0,0143	0,0174
24	_	_	_	_	_	_	_	0,0037	0,0071	0,0104
25										0,0035

Таблица 3. Критические значения статистики Шапиро-Уилка $W_{\alpha}(n)$

		α	
n	0,01	0,05	0,10
9	0,764	0,829	0,859
10	0,781	0,842	0,869
11	0,792	0,850	0,876
12	0,805	0,859	0,883
13	0,814	0,866	0,889
14	0,825	0,874	0,895
15	0,835	0,881	0,901
16	0,844	0,887	0,906
17	0,851	0,892	0,910
18	0,858	0,897	0,914
19	0,863	0,901	0,917
20	0,868	0,905	0,920
21	0,873	0,908	0,923
22	0,878	0,911	0,926
23	0,881	0,914	0,928
24	0,884	0,916	0,930
25	0,888	0,918	0,931
26	0,891	0,920	0,933
27	0,894	0,923	0,935
28	0,896	0,924	0,936
29	0,898	0,926	0,937
30	0,900	0,927	0,939
31	0,902	0,929	0,940
32	0,904	0,930	0,941
33	0,906	0,931	0,942
34	0,908	0,933	0,943
35	0,910	0,934	0,944
36	0,912	0,935	0,945
37	0,914	0,936	0,946
38	0,916	0,938	0,947
39	0,917	0,939	0,948
40	0,919	0,940	0,949
41	0,920	0,941	0,950
42	0,922	0,942	0,951
43	0,923	0,943	0,951
44	0,924	0,944	0,952
45	0,926	0,945	0,953
46	0,927	0,945	0,953
47	0,928	0,946	0,954

Процедуры обработки результатов	испытаний	образцов на	малоцикловую и	ИМ-21.33-05	Ревизия 01
многоцикловую усталость				71W-21.00-00	I CBNSNA CI

48	0,929	0,947	0,954
49	0,929	0,947	0,955
50	0,930	0,947	0,955

Таблица 4. Квантили распределения $\chi^2_{1-\alpha}$ с df степенями свободы

1.0			α				
df	0,005	0,01	0,025	0,05	0,1		
1	7,879439	6,634897	5,023886	3,841459	2,705543		
2	10,59663	9,210340	7,377759	5,991465	4,605170		
3	12,83816	11,34487	9,348404	7,814728	6,251389		
4	14,86026	13,27670	11,14329	9,487729	7,779440		
5	16,74960	15,08627	12,83250	11,07050	9,236357		
6	18,54758	16,81189	14,44938	12,59159	10,64464		
7	20,27774	18,47531	16,01276	14,06714	12,01704		
8	21,95495	20,09024	17,53455	15,50731	13,36157		
9	23,58935	21,66599	19,02277	16,91898	14,68366		
10	25,18818			18,30704	15,98718		
11	26,75685	24,72497	21,92005	19,67514	17,27501		
12	28,29952	26,21697	23,33666	21,02607	18,54935		
13	29,81947	27,68825	24,73560	22,36203	19,81193		
14	31,31935	29,14124	26,11895	23,68479	21,06414		
15	32,80132	30,57791	27,48839	24,99579	22,30713		
16	34,26719	31,99993	28,84535	26,29623	23,54183		
17	35,71847	33,40866	30,19101	27,58711	24,76904		
18	37,15645	34,80531	31,52638	28,86930	25,98942		
19	38,58226	36,19087	32,85233	30,14353	27,20357		
20	39,99685	37,56623	34,16961	31,41043	28,41198		
21	41,40106	38,93217	35,47888	32,67057	29,61509		
22	42,79565	40,28936	36,78071	33,92444	30,81328		
23	44,18128	41,63840	38,07563	35,17246	32,00690		
24	45,55851	42,97982	39,36408	36,41503	33,19624		
25	46,92789	44,31410	40,64647	37,65248	34,38159		
26	48,28988	45,64168	41,92317	38,88514	35,56317		
27	49,64492	46,96294	43,19451	40,11327	36,74122		
28	50,99338	48,27824	44,46079	41,33714	37,91592		
29	52,33562	49,58788	45,72229	42,55697	39,08747		
30	53,67196	50,89218	46,97924	43,77297	40,25602		
31	55,00270	52,19139	48,23189	44,98534	41,42174		
32	56,32811	53,48577	49,48044	46,19426	42,58475		
33	57,64845	54,77554	50,72508	47,39988	43,74518		
34	58,96393	56,06091	51,96600	48,60237	44,90316		
35	60,27477	57,34207	53,20335	49,80185	46,05879		
36	61,58118	58,61921	54,43729	50,99846	47,21217		
37	62,88334	59,89250	55,66797	52,19232	48,36341		
38	64,18141	61,16209	56,89552	53,38354	49,51258		

Процедуры обрабом многоцикловую уст	 испытаний	образцов	з на	малоциклову	юи	ИМ-21.33-05	F	Ревизия 01
20	 							

65,47557	62,42812	58,12006	54,57223	50,65977
66,76596	63,69074	59,34171	55,75848	51,80506
68,05273	64,95007	60,56057	56,94239	52,94851
69,33600	66,20624	61,77676	58,12404	54,09020
70,61590	67,45935	62,99036	59,30351	55,23019
71,89255	68,70951	64,20146	60,48089	56,36854
73,16606	69,95683	65,41016	61,65623	57,50530
74,43654	71,20140	66,61653	62,82962	58,64054
75,70407	72,44331	67,82065	64,00111	59,77429
76,96877	73,68264	69,02259	65,17077	60,90661
78,23071	74,91947	70,22241	66,33865	62,03754
79,48998	76,15389	71,42020	67,50481	63,16712
91,95170	88,37942	83,29767	79,08194	74,39701
104,2149	100,4252	95,02318	90,53123	85,52704
116,3211	112,3288	106,6286	101,8795	96,57820
128,2989	124,1163	118,1359	113,1453	107,5650
141,3513	136,9710	130,6997	125,4584	119,5887
	66,76596 68,05273 69,33600 70,61590 71,89255 73,16606 74,43654 75,70407 76,96877 78,23071 79,48998 91,95170 104,2149 116,3211 128,2989	66,76596 63,69074 68,05273 64,95007 69,33600 66,20624 70,61590 67,45935 71,89255 68,70951 73,16606 69,95683 74,43654 71,20140 75,70407 72,44331 76,96877 73,68264 78,23071 74,91947 79,48998 76,15389 91,95170 88,37942 104,2149 100,4252 116,3211 112,3288 128,2989 124,1163	66,76596 63,69074 59,34171 68,05273 64,95007 60,56057 69,33600 66,20624 61,77676 70,61590 67,45935 62,99036 71,89255 68,70951 64,20146 73,16606 69,95683 65,41016 74,43654 71,20140 66,61653 75,70407 72,44331 67,82065 76,96877 73,68264 69,02259 78,23071 74,91947 70,22241 79,48998 76,15389 71,42020 91,95170 88,37942 83,29767 104,2149 100,4252 95,02318 116,3211 112,3288 106,6286 128,2989 124,1163 118,1359	66,76596 63,69074 59,34171 55,75848 68,05273 64,95007 60,56057 56,94239 69,33600 66,20624 61,77676 58,12404 70,61590 67,45935 62,99036 59,30351 71,89255 68,70951 64,20146 60,48089 73,16606 69,95683 65,41016 61,65623 74,43654 71,20140 66,61653 62,82962 75,70407 72,44331 67,82065 64,00111 76,96877 73,68264 69,02259 65,17077 78,23071 74,91947 70,22241 66,33865 79,48998 76,15389 71,42020 67,50481 91,95170 88,37942 83,29767 79,08194 104,2149 100,4252 95,02318 90,53123 116,3211 112,3288 106,6286 101,8795 128,2989 124,1163 118,1359 113,1453

Таблица 5. Квантили распределения Стъюдента $t_{1-\frac{\alpha}{2}}$ с n-1 степенями свободы

		α				α	
n	0,01	0,05	0,1	n	0,01	0,05	0,1
9	3,249836	2,262157	1,833113	34	2,728394	2,032245	1,690924
10	3,169273	2,228139	1,812461	35	2,723806	2,030108	1,689572
11	3,105807	2,200985	1,795885	36	2,719485	2,028094	1,688298
12	3,05454	2,178813	1,782288	37	2,715409	2,026192	1,687094
13	3,012276	2,160369	1,770933	38	2,711558	2,024394	1,685954
14	2,976843	2,144787	1,76131	39	2,707913	2,022691	1,684875
15	2,946713	2,131450	1,753050	40	2,704459	2,021075	1,683851
16	2,920782	2,119905	1,745884	41	2,701181	2,019541	1,682878
17	2,898231	2,109816	1,739607	42	2,698066	2,018082	1,681952
18	2,878440	2,100922	1,734064	43	2,695102	2,016692	1,681071
19	2,860935	2,093024	1,729133	44	2,692278	2,015368	1,680230
20	2,845340	2,085963	1,724718	45	2,689585	2,014103	1,679427
21	2,831360	2,079614	1,720743	46	2,687013	2,012896	1,678660
22	2,818756	2,073873	1,717144	47	2,684556	2,011741	1,677927
23	2,807336	2,068658	1,713872	48	2,682204	2,010635	1,677224
24	2,796940	2,063899	1,710882	49	2,679952	2,009575	1,676551
25	2,787436	2,059539	1,708141	50	2,677793	2,008559	1,675905
26	2,778715	2,055529	1,705618	60	2,660283	2,000298	1,670649
27	2,770683	2,051831	1,703288	70	2,647905	1,994437	1,666914
28	2,763262	2,048407	1,701131	80	2,638691	1,990063	1,664125
29	2,756386	2,045230	1,699127	90	2,631565	1,986675	1,661961
30	2,749996	2,042272	1,697261	100	2,625891	1,983972	1,660234
31	2,744042	2,039513	1,695519	200	2,600634	1,971896	1,652508

32	2,738481	2,036933	1,693889	500	2,585698	1,964720	1,647907
33	2,733277	2,034515	1,692360	1000	2,580755	1,962339	1,646379

Таблица 6. Квантили распределения Стъюдента $t_{1-\frac{0.05}{2n}}$ с n-k-1 степенями свободы

	k											
n	2	3	4	5	6	7	8	9	10			
9	4,220928	4,655298	5,436592	7,184869	13,36044	114,5887	_	_	_			
10	4,029337	4,316827	4,773341	5,597568	7,453319	14,08905	127,3213		_			
11	3,899875	4,104812	4,404661	4,881904	5,746507	7,704063	14,78178	140,054	_			
12	3,807878	3,961773	4,174315	4,485768	4,982528	5,885305	7,939751	15,44348	152,7866			
13	3,740062	3,860155	4,019067	4,23877	4,561172	5,076398	6,015429	8,162451	16,07797			
14	3,68867	3,785191	3,90877	4,07242	4,298899	4,631676	5,164446	6,13804	8,373813			
15	3,648889	3,728294	3,827337	3,954219	4,122363	4,355275	4,697922	5,247417	6,254071			
16	3,617585	3,684154	3,765443	3,866882	3,996902	4,169323	4,408365	4,760432	5,325920			
17	3,592631	3,649315	3,717329	3,800413	3,904135	4,037149	4,213652	4,458552	4,819633			
18	3,572540	3,621442	3,679260	3,748654	3,833452	3,939355	4,075233	4,255642	4,506155			
19	3,556242	3,598902	3,648710	3,707612	3,778328	3,864766	3,972759	4,111381	4,295539			
20	3,542949	3,580522	3,623918	3,674594	3,734536	3,806518	3,894532	4,004530	4,145789			
21	3,532068	3,565438	3,603616	3,647719	3,699229	3,760171	3,833370	3,922897	4,034826			
22	3,523148	3,553001	3,586876	3,625637	3,670419	3,722732	3,784635	3,859007	3,949992			
23	3,515837	3,542718	3,572997	3,607357	3,646679	3,692116	3,745203	3,808033	3,883536			
24	3,509858	3,534203	3,561445	3,592134	3,626963	3,666827	3,712896	3,766730	3,830456			
25	3,504992	3,527154	3,551808	3,579400	3,610485	3,645767	3,686155	3,732834	3,787390			
26	3,501062	3,521330	3,543760	3,568714	3,596643	3,628111	3,663832	3,704726	3,751997			
27	3,497923	3,516538	3,537040	3,559728	3,584973	3,613229	3,645068	3,681214	3,722599			
28	3,495459	3,512621	3,531440	3,552167	3,575107	3,600633	3,629207	3,661405	3,697963			
29	3,493571	3,509449	3,526791	3,545808	3,566754	3,589938	3,615737	3,644618	3,677166			
30	3,492178	3,506915	3,522953	3,540469	3,559678	3,580837	3,604258	3,630322	3,659503			
31	3,491212	3,504931	3,519811	3,536003	3,553689	3,573085	3,594451	3,618102	3,644424			
32	3,490616	3,503423	3,517269	3,532286	3,548628	3,566479	3,586057	3,607625	3,631500			
33	3,490341	3,502327	3,515247	3,529216	3,544367	3,560856	3,578868	3,598623	3,620386			
34	3,490347	3,501589	3,513677	3,526708	3,540797	3,556079	3,572710	3,590878	3,610806			
35	3,490597	3,501166	3,512501	3,524688	3,537827	3,552033	3,567442	3,584213	3,602534			
36	3,491061	3,501017	3,511670	3,523095	3,535379	3,548623	3,562944	3,578477	3,595383			
37	3,491712	3,501109	3,511142	3,521877	3,533390	3,545769	3,559116	3,573548	3,589202			
38	3,492529	3,501414	3,510881	3,520988	3,531802	3,543402	3,555874	3,569320	3,583861			
39	3,493490	3,501906	3,510854	3,520389	3,530569	3,541462	3,553145	3,565708	3,579253			
40	3,494579	3,502562	3,511036	3,520047	3,529649	3,539900	3,550869	3,562634	3,575286			
41	3,495781	3,503365	3,511402	3,519933	3,529005	3,538672	3,548992	3,560036	3,571882			

3,497082	3,504298	3,511931	3,520021	3,528608	3,537740	3,547470	3,557859	3,568976
3,498470	3,505344	3,512606	3,520288	3,528429	3,537071	3,546261	3,556054	3,566509
3,499936	3,506493	3,513409	3,520716	3,528446	3,536637	3,545332	3,554580	3,564434
3,501469	3,507731	3,514328	3,521286	3,528636	3,536413	3,544653	3,553402	3,562705
3,503063	3,509050	3,515349	3,521984	3,528982	3,536376	3,544198	3,552487	3,561287
3,504708	3,510439	3,516461	3,522795	3,529468	3,536507	3,543943	3,551810	3,560147
3,506401	3,511892	3,517654	3,523709	3,530079	3,536789	3,543867	3,551344	3,559255
3,508133	3,513400	3,518921	3,524714	3,530802	3,537206	3,543953	3,551069	3,558587
3,509901	3,514957	3,520251	3,525801	3,531626	3,537745	3,544184	3,550966	3,558120
3,528720	3,532232	3,535879	3,539668	3,543607	3,547706	3,551974	3,556423	3,561063
3,548091	3,550685	3,553362	3,556127	3,558984	3,561936	3,564991	3,568152	3,571425
3,566975	3,568976	3,571033	3,573147	3,575322	3,577559	3,579862	3,582234	3,584677
3,585009	3,586604	3,588237	3,589911	3,591627	3,593385	3,595189	3,597040	3,598939
3,602088	3,603392	3,604723	3,606084	3,607475	3,608898	3,610352	3,611841	3,613363
3,730353	3,730706	3,731063	3,731423	3,731788	3,732156	3,732528	3,732904	3,733285
3,922401	3,922466	3,922531	3,922596	3,922661	3,922727	3,922793	3,922859	3,922926
4,073440	4,073458	4,073476	4,073494	4,073512	4,073530	4,073548	4,073566	4,073585
	3,498470 3,499936 3,501469 3,503063 3,504708 3,506401 3,508133 3,509901 3,528720 3,548091 3,566975 3,585009 3,602088 3,730353 3,922401	3,498470 3,505344 3,499936 3,506493 3,501469 3,507731 3,503063 3,509050 3,504708 3,510439 3,508133 3,513400 3,509901 3,514957 3,528720 3,532232 3,548091 3,568976 3,585009 3,586604 3,602088 3,603392 3,730353 3,730706 3,922401 3,922466	3,498470 3,505344 3,512606 3,499936 3,506493 3,513409 3,501469 3,507731 3,514328 3,503063 3,509050 3,515349 3,504708 3,510439 3,516461 3,508133 3,513400 3,518921 3,509901 3,514957 3,520251 3,528720 3,532232 3,535879 3,566975 3,568976 3,571033 3,585009 3,586604 3,588237 3,602088 3,603392 3,604723 3,730353 3,730706 3,731063 3,922401 3,922466 3,922531	3,498470 3,505344 3,512606 3,520288 3,499936 3,506493 3,513409 3,520716 3,501469 3,507731 3,514328 3,521286 3,503063 3,509050 3,515349 3,521984 3,504708 3,510439 3,516461 3,522795 3,508133 3,513400 3,518921 3,524714 3,509901 3,514957 3,520251 3,525801 3,528720 3,532232 3,535879 3,539668 3,548091 3,566975 3,568976 3,571033 3,573147 3,585009 3,586604 3,588237 3,589911 3,602088 3,603392 3,604723 3,606084 3,730353 3,730706 3,731063 3,731423 3,922401 3,922466 3,922531 3,922596	3,498470 3,505344 3,512606 3,520288 3,528429 3,499936 3,506493 3,513409 3,520716 3,528446 3,501469 3,507731 3,514328 3,521286 3,528636 3,503063 3,509050 3,515349 3,521984 3,528982 3,504708 3,510439 3,516461 3,522795 3,529468 3,508133 3,51892 3,517654 3,523709 3,530079 3,508133 3,514957 3,520251 3,525801 3,531626 3,528720 3,532232 3,535879 3,539668 3,543607 3,585009 3,586604 3,588237 3,589911 3,591627 3,602088 3,603392 3,604723 3,606084 3,607475 3,730353 3,730706 3,731063 3,731423 3,731788 3,922401 3,922466 3,922531 3,922596 3,922661	3,498470 3,505344 3,512606 3,520288 3,528429 3,537071 3,499936 3,506493 3,513409 3,520716 3,528446 3,536637 3,501469 3,507731 3,514328 3,521286 3,528636 3,536413 3,503063 3,509050 3,515349 3,521984 3,528982 3,536376 3,504708 3,510439 3,516461 3,522795 3,529468 3,536507 3,508401 3,511892 3,517654 3,523709 3,530079 3,536789 3,508901 3,514957 3,520251 3,525801 3,531626 3,537745 3,528720 3,532232 3,535879 3,539668 3,543607 3,547706 3,585009 3,568976 3,571033 3,573147 3,575322 3,593385 3,602088 3,603392 3,604723 3,606084 3,607475 3,608898 3,730353 3,730706 3,731063 3,731423 3,922661 3,922727	3,498470 3,505344 3,512606 3,520288 3,528429 3,537071 3,546261 3,499936 3,506493 3,513409 3,520716 3,528446 3,536637 3,545332 3,501469 3,507731 3,514328 3,521286 3,528636 3,536413 3,544653 3,503063 3,509050 3,515349 3,521984 3,528982 3,536376 3,544198 3,504708 3,510439 3,516461 3,522795 3,529468 3,536507 3,543943 3,508133 3,513400 3,518921 3,524714 3,530802 3,537206 3,544184 3,528720 3,532232 3,535879 3,539668 3,547706 3,551974 3,548091 3,550685 3,553362 3,556127 3,558984 3,561936 3,564991 3,585009 3,586604 3,588237 3,589911 3,591627 3,593385 3,595189 3,602088 3,603392 3,604723 3,606084 3,607475 3,608898 3,610352 3,730353 3,730706	3,498470 3,505344 3,512606 3,520288 3,528429 3,537071 3,546261 3,556054 3,499936 3,506493 3,513409 3,520716 3,528446 3,536637 3,545332 3,554580 3,501469 3,507731 3,514328 3,521286 3,528636 3,536413 3,544653 3,553402 3,503063 3,509050 3,515349 3,521984 3,528982 3,536376 3,544198 3,552487 3,504708 3,510439 3,516461 3,522795 3,529468 3,536507 3,543943 3,551810 3,508133 3,511892 3,517654 3,523709 3,530799 3,536789 3,543867 3,551344 3,509901 3,514957 3,520251 3,525801 3,531626 3,537745 3,544184 3,550966 3,528720 3,532232 3,535362 3,55127 3,558984 3,561936 3,564991 3,568152 3,566975 3,568976 3,571033 3,573147 3,573252 3,573852 3,579862 3,582234

Таблица 7. Квантили распределения Фишера $F_{1-\alpha}$ со степенями свободы k_1 и k_2 , $\alpha=0.05$

I.					k	7.1				
k_2	1	2	3	4	5	6	7	8	9	10
1	161,45	199,5	215,71	224,58	230,16	233,99	236,77	238,88	240,54	241,88
2	18,513	19,000	19,164	19,247	19,296	19,330	19,353	19,371	19,385	19,396
3	10,128	9,5521	9,2766	9,1172	9,0135	8,9406	8,8868	8,8452	8,8123	8,7855
4	7,7086	6,9443	6,5914	6,3883	6,2560	6,1631	6,0942	6,0410	5,9988	5,9644
5	6,6079	5,7861	5,4095	5,1922	5,0503	4,9503	4,8759	4,8183	4,7725	4,7351
6	5,9874	5,1433	4,7571	4,5337	4,3874	4,2839	4,2066	4,1468	4,0990	4,0600
7	5,5914	4,7374	4,3468	4,1203	3,9715	3,8660	3,7870	3,7257	3,6767	3,6365
8	5,3177	4,4590	4,0662	3,8378	3,6875	3,5806	3,5005	3,4381	3,3881	3,3472
9	5,1174	4,2565	3,8626	3,6331	3,4817	3,3738	3,2927	3,2296	3,1789	3,1373
10	4,9646	4,1028	3,7083	3,4780	3,3258	3,2172	3,1355	3,0717	3,0204	2,9782
11	4,8443	3,9823	3,5874	3,3567	3,2039	3,0946	3,0123	2,9480	2,8962	2,8536
12	4,7472	3,8853	3,4903	3,2592	3,1059	2,9961	2,9134	2,8486	2,7964	2,7534
13	4,6672	3,8056	3,4105	3,1791	3,0254	2,9153	2,8321	2,7669	2,7144	2,6710
14	4,6001	3,7389	3,3439	3,1122	2,9582	2,8477	2,7642	2,6987	2,6458	2,6021
15	4,5431	3,6823	3,2874	3,0556	2,9013	2,7905	2,7066	2,6408	2,5876	2,5437
16	4,4940	3,6337	3,2389	3,0069	2,8524	2,7413	2,6572	2,5911	2,5377	2,4935
17	4,4513	3,5915	3,1968	2,9647	2,8100	2,6987	2,6143	2,5480	2,4943	2,4499
18	4,4139	3,5546	3,1599	2,9277	2,7729	2,6613	2,5767	2,5102	2,4563	2,4117
19	4,3808	3,5219	3,1274	2,8951	2,7401	2,6283	2,5435	2,4768	2,4227	2,3779
20	4,3513	3,4928	3,0984	2,8661	2,7109	2,5990	2,5140	2,4471	2,3928	2,3479
21	4,3248	3,4668	3,0725	2,8401	2,6848	2,5727	2,4876	2,4205	2,3661	2,3210
22	4,3009	3,4434	3,0491	2,8167	2,6613	2,5491	2,4638	2,3965	3,3419	2,2967
23	4,2793	3,4221	3,0280	2,7955	2,6400	2,5277	2,4422	2,3748	2,3201	2,2747
24	4,2597	3,4028	3,0088	2,7763	2,6207	2,5082	2,4226	2,3551	2,3002	2,2547
25	4,2417	3,3852	2,9912	2,7587	2,6030	2,4904	2,4047	2,3371	2,2821	2,2365
26	4,2252	3,3690	2,9751	2,7426	2,5868	2,4741	2,3883	2,3205	2,2655	2,2197
27	4,2100	3,3541	2,9604	2,7278	2,5719	2,4591	2,3732	2,3053	2,2501	2,2043
28	4,1960	3,3404	2,9467	2,7141	2,5581	2,4453	2,3593	2,2913	2,2360	2,1900

29	4,1830	3,3277	2,9340	2,7014	2,5454	2,4324	2,3463	2,2782	2,2229	2,1768
30	4,1709	3,3158	2,9223	2,6896	2,5336	2,4205	2,3343	2,2662	2,2107	2,1646
40	4,0848	3,2317	2,8387	2,6060	2,4459	2,3359	2,2400	2,1802	2,1240	2,0772
60	4,0012	3,1504	2,7581	2,5252	2,3683	2,2540	2,1665	2,0970	2,0401	1,9926
120	3,9201	3,0718	2,6802	2,4472	2,2900	2,1750	2,0867	2,0164	1,9588	1,9105
2	3 8/115	2 0057	2 6049	2 3710	2 21/11	2.0086	2 0006	1 038/	1 8700	1 8307

Таблица 8. Квантили распределения Фишера $F_{1-\alpha}$ со степенями свободы k_1 и k_2 , $\alpha=0.1$

	о. Кванти	, paenpe,				71	уоды иүн и	2, 00 0/1		
k_2	1	2	3	4	5	6	7	8	9	10
1	39,8635	49,5000	53,5932	55,8330	57,2401	58,2044	58,9060	59,4390	59,8576	60,1950
2	8,5263	9,0000	9,1618	9,2434	9,2926	9,3255	9,3491	9,3668	9,3805	9,3916
3	5,5383	5,4624	5,3908	5,3426	5,3092	5,2847	5,2662	5,2517	5,2400	5,2304
4	4,5448	4,3246	4,1909	4,1072	4,0506	4,0097	3,9790	3,9549	3,9357	3,9199
5	4,0604	3,7797	3,6195	3,5202	3,4530	3,4045	3,3679	3,3393	3,3163	3,2974
6	3,7759	3,4633	3,2888	3,1808	3,1075	3,0546	3,0145	2,9830	2,9577	2,9369
7	3,5894	3,2574	3,0741	2,9605	2,8833	2,8274	2,7849	2,7516	2,7247	2,7025
8	3,4579	3,1131	2,9238	2,8064	2,7264	2,6683	2,6241	2,5893	2,5612	2,5380
9	3,3603	3,0065	2,8129	2,6927	2,6106	2,5509	2,5053	2,4694	2,4403	2,4163
10	3,2850	2,9245	2,7277	2,6053	2,5216	2,4606	2,4140	2,3772	2,3473	2,3226
11	3,2252	2,8595	2,6602	2,5362	2,4512	2,3891	2,3416	2,3040	2,2735	2,2482
12	3,1765	2,8068	2,6055	2,4801	2,3940	2,3310	2,2828	2,2446	2,2135	2,1878
13	3,1362	2,7632	2,5603	2,4337	2,3467	2,2830	2,2341	2,1953	2,1638	2,1376
14	3,1022	2,7265	2,5222	2,3947	2,3069	2,2426	2,1931	2,1539	2,1220	2,0954
15	3,0732	2,6952	2,4898	2,3614	2,2730	2,2081	2,1582	2,1185	2,0862	2,0593
16	3,0481	2,6682	2,4618	2,3327	2,2438	2,1783	2,1280	2,0880	2,0553	2,0281
17	3,0262	2,6446	2,4374	2,3077	2,2183	2,1524	2,1017	2,0613	2,0284	2,0009
18	3,0070	2,6239	2,4160	2,2858	2,1958	2,1296	2,0785	2,0379	2,0047	1,9770
19	2,9899	2,6056	2,3970	2,2663	2,1760	2,1094	2,0580	2,0171	1,9836	1,9557
20	2,9747	2,5893	2,3801	2,2489	2,1582	2,0913	2,0397	1,9985	1,9649	1,9367
21	2,9610	2,5746	2,3649	2,2333	2,1423	2,0751	2,0233	1,9819	1,9480	1,9197
22	2,9486	2,5613	2,3512	2,2193	2,1279	2,0605	2,0084	1,9668	1,9327	1,9043
23	2,9374	2,5493	2,3387	2,2065	2,1149	2,0472	1,9949	1,9531	1,9189	1,8903
24	2,9271	2,5383	2,3274	2,1949	2,1030	2,0351	1,9826	1,9407	1,9063	1,8775
25	2,9177	2,5283	2,3170	2,1842	2,0922	2,0241	1,9714	1,9292	1,8947	1,8658
26	2,9091	2,5191	2,3075	2,1745	2,0822	2,0139	1,9610	1,9188	1,8841	1,8550
27	2,9012	2,5106	2,2987	2,1655	2,0730	2,0045	1,9515	1,9091	1,8743	1,8451
28	2,8938	2,5028	2,2906	2,1571	2,0645	1,9959	1,9427	1,9001	1,8652	1,8359
29	2,8870	2,4955	2,2831	2,1494	2,0566	1,9878	1,9345	1,8918	1,8568	1,8274
30	2,8807	2,4887	2,2761	2,1422	2,0492	1,9803	1,9269	1,8841	1,8490	1,8195
40	2,8354	2,4404	2,2261	2,0910	1,9968	1,9269	1,8725	1,8289	1,7929	1,7627
60	2,7911	2,3933	2,1774	2,0410	1,9457	1,8747	1,8194	1,7748	1,7380	1,7070
120	2,7478	2,3473	2,1210	1,9923	1,8959	1,8238	1,7675	1,7220	1,6842	1,6524
∞	2,7106	2,3079	2,0893	1,9505	1,8530	1,7800	1,7228	1,6764	1,6378	1,6051

Таблица 9. Значение толерантного коэффициента U(99%,0,95,n,k) для построения базисной кривой (99%/0,95)

		k							
n	2	3	4	5	6	7	8	9	10
9	4,336	4,602	4,997	5,645	6,6906	10,366	37,097	_	_
10	4,128	4,321	4,588	4,984	5,633	6,895	10,357	37,097	_
11	3,968	4,115	4,309	4,577	4,973	5,623	6,886	10,349	37,098

12	3,841	3,957	4,104	4,299	4,567	4,964	5,614	6,878	10,343
13	3,737	3,831	3,947	4,095	4,290	4,559	4,956	5,607	6,872
14	3,650	3,728	3,823	3,939	4,087	4,282	4,552	4,950	5,601
15	3,576	3,642	3,721	3,815	3,932	4,081	4,276	4,545	4,944
16	3,513	3,569	3,636	3,714	3,809	3,926	4,075	4,270	4,540
17	3,457	3,506	3,563	3,629	3,708	3,803	3,920	4,069	4,265
18	3,408	3,451	3,501	3,557	3,624	3,703	3,798	3,915	4,064
19	3,365	3,403	3,446	3,495	3,552	3,619	3,698	3,793	3,911
20	3,326	3,360	3,398	3,441	3,491	3,548	3,614	3,694	3,789
21	3,290	3,321	3,355	3,394	3,437	3,486	3,544	3,610	3,690
22	3,258	3,286	3,317	3,351	3,389	3,433	3,483	3,540	3,607
23	3,229	3,254	3,282	3,313	3,347	3,386	3,429	3,479	3,536
24	3,202	3,225	3,251	3,278	3,309	3,344	3,382	3,426	3,476
25	3,177	3,199	3,222	3,247	3,275	3,306	3,340	3,379	3,423
26	3,155	3,174	3,195	3,218	3,244	3,272	3,303	3,337	3,376
27	3,133	3,151	3,171	3,192	3,215	3,241	3,269	3,300	3,335
28	3,113	3,130	3,148	3,168	3,189	3,213	3,238	3,266	3,297
29	3,095	3,111	3,127	3,146	3,165	3,187	3,210	3,236	3,264
30	3,078	3,092	3,108	3,125	3,143	3,163	3,184	3,208	3,233
31	3,061	3,075	3,090	3,105	3,122	3,141	3,160	3,182	3,205
32	3,046	3,059	3,073	3,087	3,103	3,120	3,138	3,158	3,180
33	3,031	3,044	3,057	3,070	3,085	3,101	3,118	3,136	3,156
34	3,018	3,029	3,041	3,054	3,068	3,083	3,099	3,116	3,134
35	3,005	3,016	3,027	3,039	3,052	3,066	3,081	3,097	3,114
36	2,993	3,003	3,014	3,025	3,037	3,050	3,064	3,079	3,095
37	2,981	2,991	3,001	3,012	3,023	3,035	3,048	3,062	3,077
38	2,970	2,979	2,989	2,999	3,010	3,021	3,034	3,047	3,061
39	2,959	2,968	2,977	2,987	2,997	3,008	3,020	3,032	3,045
40	2,949	2,957	2,966	2,975	2,985	2,996	3,006	3,018	3,030
41	2,939	2,947	2,956	2,965	2,974	2,984	2,994	3,005	3,016
42	2,930	2,938	2,946	2,954	2,963	2,972	2,982	2,992	3,003
43	2,921	2,928	2,936	2,944	2,953	2,961	2,971	2,981	2,991
44	2,913	2,920	2,927	2,935	2,943	2,951	2,960	2,969	2,979
45	2,904	2,911	2,918	2,925	2,933	2,941	2,950	2,959	2,968
46	2,896	2,903	2,910	2,917	2,924	2,932	2,940	2,948	2,957
47	2,889	2,895	2,902	2,908	2,915	2,923	2,931	2,939	2,947
48	2,882	2,888	2,894	2,900	2,907	2,914	2,922	2,929	2,937
49	2,875	2,880	2,886	2,893	2,899	2,906	2,913	2,920	2,928
50	2,868	2,873	2,879	2,885	2,891	2,898	2,905	2,912	2,919
60	2,811	2,815	2,819	2,823	2,828	2,832	2,837	2,842	2,847
70	2,768	2,771	2,775	2,778	2,781	2,784	2,788	2,791	2,795

Процедуры обработки результатов испытаний образцов на малог	_{ЦИКЛОВУЮ} ИМ-21.33-05	Ревизия 01
MHOLOHMALODANO ACTALIOCAE	71111 Z 1.00 00	I CDVISVIVI O I

80	2,735	2,737	2,740	2,742	2,745	2,748	2,750	2,753	2,756
90	2,708	2,710	2,712	2,714	2,716	2,718	2,720	2,723	2,725
100	2,686	2,687	2,689	2,691	2,692	2,694	2,696	2,698	2,700
200	2,570	2,571	2,571	2,572	2,572	2,573	2,573	2,574	2,575
500	2,476	2,476	2,476	2,476	2,476	2,476	2,476	2,476	2,477
1000	2,430	2,430	2,430	2,430	2,430	2,430	2,430	2,430	2,431

Таблица 10. Значение толерантного коэффициента U(90%,0,95,n,k) для построения базисной кривой (90%/0,95)

					k				
п	2	3	4	5	6	7	8	9	10
9	2,555	2,696	2,907	3,256	3,940	5,828	20,435	_	_
10	2,431	2,533	2,675	2,887	3,236	3,921	5,812	20,435	
11	2,335	2,412	2,515	2,657	2,869	3,219	3,906	5,798	20,435
12	2,259	2,319	2,396	2,499	2,642	2,855	3,205	3,893	5,786
13	2,196	2,244	2,305	2,383	2,486	2,629	2,842	3,193	3,881
14	2,142	2,183	2,232	2,293	2,371	2,474	2,617	2,831	3,183
15	2,097	2,131	2,171	2,221	2,282	2,360	2,464	2,607	2,821
16	2,058	2,087	2,121	2,161	2,211	2,272	2,351	2,454	2,599
17	2,023	2,049	2,078	2,112	2,153	2,202	2,264	2,342	2,446
18	1,993	2,015	2,040	2,069	2,104	2,144	2,194	2,256	2,335
19	1,966	1,985	2,007	2,032	2,062	2,096	2,137	2,187	2,249
20	1,941	1,959	1,978	2,000	2,025	2,055	2,089	2,130	2,180
21	1,919	1,935	1,952	1,971	1,994	2,019	2,048	2,083	2,124
22	1,899	1,913	1,928	1,946	1,965	1,988	2,013	2,043	2,077
23	1,881	1,893	1,907	1,923	1,940	1,960	1,982	2,008	2,037
24	1,863	1,875	1,888	1,902	1,917	1,935	1,955	1,977	2,003
25	1,848	1,858	1,870	1,883	1,897	1,912	1,930	1,950	1,972
26	1,833	1,843	1,854	1,865	1,878	1,892	1,908	1,925	1,945
27	1,820	1,829	1,838	1,849	1,861	1,874	1,888	1,904	1,921
28	1,807	1,815	1,824	1,834	1,845	1,857	1,869	1,884	1,899
29	1,795	1,803	1,811	1,820	1,830	1,841	1,853	1,866	1,880
30	1,784	1,791	1,799	1,807	1,817	1,826	1,837	1,849	1,862
31	1,774	1,780	1,788	1,795	1,804	1,813	1,823	1,834	1,846
32	1,764	1,770	1,777	1,784	1,792	1,800	1,810	1,820	1,830
33	1,754	1,760	1,767	1,774	1,781	1,789	1,797	1,806	1,816
34	1,746	1,751	1,757	1,764	1,770	1,778	1,786	1,794	1,803
35	1,737	1,743	1,748	1,754	1,761	1,767	1,775	1,783	1,791
36	1,729	1,734	1,740	1,745	1,751	1,758	1,765	1,772	1,780

37	1,722	1,726	1,732	1,737	1,743	1,749	1,755	1,762	1,769
38	1,715	1,719	1,724	1,729	1,734	1,740	1,746	1,752	1,759
39	1,708	1,712	1,716	1,721	1,726	1,732	1,737	1,743	1,750
40	1,701	1,705	1,709	1,714	1,719	1,724	1,729	1,735	1,741
41	1,695	1,699	1,703	1,707	1,712	1,716	1,722	1,727	1,733
42	1,689	1,692	1,696	1,700	1,705	1,709	1,714	1,719	1,725
43	1,683	1,686	1,690	1,694	1,698	1,703	1,707	1,712	1,717
44	1,677	1,681	1,684	1,688	1,692	1,696	1,701	1,705	1,710
45	1,672	1,675	1,679	1,682	1,686	1,690	1,694	1,699	1,703
46	1,667	1,670	1,673	1,677	1,680	1,684	1,688	1,692	1,697
47	1,662	1,665	1,668	1,671	1,675	1,678	1,682	1,686	1,690
48	1,657	1,660	1,663	1,666	1,670	1,673	1,677	1,680	1,684
49	1,653	1,655	1,658	1,661	1,664	1,668	1,671	1,675	1,679
50	1,648	1,651	1,654	1,656	1,660	1,663	1,666	1,669	1,673
60	1,611	1,613	1,615	1,617	1,619	1,621	1,623	1,626	1,628
70	1,583	1,584	1,586	1,587	1,589	1,590	1,592	1,594	1,595
80	1,560	1,562	1,563	1,564	1,565	1,566	1,568	1,569	1,570
90	1,542	1,543	1,544	1,545	1,546	1,547	1,548	1,549	1,550
100	1,528	1,528	1,529	1,530	1,531	1,531	1,532	1,533	1,534
200	1,450	1,450	1,450	1,451	1,451	1,451	1,451	1,451	1,452
500	1,385	1,385	1,385	1,385	1,385	1,385	1,385	1,385	1,386
1000	1,354	1,354	1,354	1,354	1,354	1,354	1,354	1,354	1,354
	-								

Приложение Б

Целевые функции, ограничения на параметры и начальные приближения для определения параметров нелинейных моделей

	Степенная модель с горизонтальной асимптотой (8)
Целевая	$\sum_{n=1}^{\infty} (1 - (n-1)^{n})^{2}$
функция	$S(\widetilde{A}_{1},\widetilde{A}_{2},\widetilde{A}_{3}) = \sum_{i=1} \left(\lg\left((N_{f})_{i} \right) - \left(\widetilde{A}_{1} + \widetilde{A}_{2} \lg\left((\Delta \varepsilon)_{i} - \widetilde{A}_{3} \right) \right) \right)^{2}$ $0 < \widetilde{A}_{1} < 10 \cdot \widetilde{A}_{1}^{*}; 10 \cdot \widetilde{A}_{2}^{*} < \widetilde{A}_{2} < 0; 0 < \widetilde{A}_{3} < (\Delta \varepsilon)_{min},$
Ограничения	$0 < \widetilde{A}_1 < 10 \cdot \widetilde{A}_1^*; 10 \cdot \widetilde{A}_2^* < \widetilde{A}_2 < 0; 0 < \widetilde{A}_3 < (\Delta \varepsilon)_{min},$
	\widetilde{A}_1^* и \widetilde{A}_2^* – оценки параметров A_1 и A_2 степенной модели (3), полученные
	по формуле (11)
Начальное	$\widetilde{A_1^{(0)}} = \widetilde{A}_1^*, \ \widetilde{A_2^{(0)}} = \widetilde{A}_2^*, \ \widetilde{A_3^{(0)}}$ (оценки «предела выносливости») – $\Delta \varepsilon$, все
приближение	образцы на котором отстояли базу, если такой ∆є имеется, либо величина
	$0.5(\Delta \varepsilon)_{min}$, $(\Delta \varepsilon)_{min}$ – минимальный $\Delta \varepsilon$, на котором проводили испытания
	Билинейная модель (9)
Целевая функция	$S\left(\widetilde{A}_{1},\widetilde{A}_{2},\widetilde{A}_{3},\widetilde{A}_{4}\right) = \sum_{i=1}^{n} \left((\Delta \varepsilon)_{i} - \widetilde{A}_{1} \left(\lg((N_{f})_{i}) - \lg \widetilde{A}_{3} \right) \cdot H\left(\widetilde{A}_{3} - (N_{f})_{i} \right) + C\left(\widetilde{A}_{3} - (N_{f})_{i}\right) + C\left(\widetilde{A}_$
	$+ \widetilde{A}_2 \left(lg \widetilde{A}_3 - \lg((N_f)_i) \right) \cdot H \left((N_f)_i - \widetilde{A}_3 \right) + \widetilde{A}_4)^2$
Ограничения	$10/\widetilde{A}_{2}^{*} < \widetilde{A}_{1} < 0; \ 0 < \widetilde{A}_{2} < -10/\widetilde{A}_{2}^{**};$
	$(N_f)_{min} < \widetilde{A}_3 < (N_f)_{max}; (\Delta \varepsilon)_{min} < \widetilde{A}_4 < (\Delta \varepsilon)_{max};$
	\widetilde{A}_2^* и \widetilde{A}_2^{**} – оценки параметра A_2 экспоненциальной модели (4),
	полученные по формуле (11) для испытаний при двух наибольших и двух наименьших $\Delta \varepsilon$ соответственно; $(N_f)_{min}$ и $(N_f)_{max}$ — минимальная и
	максимальная наблюдаемые N_f ; $(\Delta \varepsilon)_{min}$ и $(\Delta \varepsilon)_{max}$ – минимальный и
	максимальный ∆є, на которых проводили испытания
Начальное	$\widetilde{A_1^{(0)}} = 1/\widetilde{A}_2^*, \ \widetilde{A_2^{(0)}} = -1/\widetilde{A_2^{**}}, \ \widetilde{A_3^{(0)}}$ и $\widetilde{A_4^{(0)}}$ – следует выбирать по графику,
приближение	ориентируясь на предполагаемую «точку излома»
	Модель Коффина-Мэнсона-Басквина (10)
Целевая функция	$S(\widetilde{A}_1, \widetilde{A}_2, \widetilde{A}_3, \widetilde{A}_4) = \sum_{i=1}^n \left((\Delta \varepsilon)_i - \widetilde{A}_1 \left((N_f)_i \right)^{\widetilde{A}_3} + \widetilde{A}_2 \left((N_f)_i \right)^{\widetilde{A}_4} \right)^2$
	i=1
Ограничения	$0 < \widetilde{A}_1 < 10 \cdot 10^{-\frac{\widetilde{A}_1^*}{\widetilde{A}_2^*}}, 0 < \widetilde{A}_2 < 10 \cdot 10^{-\frac{\widetilde{A}_1^{**}}{\widetilde{A}_2^{**}}}; \frac{10}{\widetilde{A}_2^*} < \widetilde{A}_3 < 0; \frac{10}{\widetilde{A}_2^*} < \widetilde{A}_4 < 0$
	$\widetilde{A_1^*}$, $\widetilde{A_2^*}$ и $\widetilde{A_1^{**}}$, $\widetilde{A_2^{**}}$ — оценки параметров A_1 , A_2 степенной модели (3),
	полученные по формуле (11) для испытаний при двух наибольших и двух
	наименьших $\Delta \varepsilon$ соответственно
Начальное	$\underline{A_1^*}$ $\underline{A_1^*}$
приближение	$\widetilde{A_{1}^{(0)}} = 10^{\frac{-A_{1}^{*}}{\widetilde{A_{2}^{*}}}}, \widetilde{A_{2}^{(0)}} = 10^{\frac{-A_{1}^{*}}{\widetilde{A_{2}^{*}}}}, \widetilde{A_{3}^{(0)}} = \frac{1}{\widetilde{A_{2}^{*}}}, \widetilde{A_{4}^{(0)}} = \frac{1}{\widetilde{A_{2}^{*}}}$
L	